分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

植物养分利用与重金属毒害原位研究先进技术综述 4

2020.5.11
头像

王辉

致力于为分析测试行业奉献终身

这一技术最初主要用于材料、冶金、地质、矿物等研究。CEITEC欧洲工程技术中心AtomTrace LIBS研究团队可以说是最早关注到LIBS技术在生命科学和生物医学领域应用的科研团队之一。2005年,Jozef Kaiser博士(Atomtrace科学主任、布尔诺大学教授、激光光谱学研究室负责人、CEITEC物质特性与表面科学研究部主任)等在European Physical Journal上发表了“Mapping of the metal intake in plants by large-field X-ray microradiography and preliminary feasibility studies in microtomography”(Eur.Phys.J. D 32, 113-118);2006年又利用LIBS飞秒激光光谱分析技术研究分析了植物样品铁、锰元素的分布并首次作出完整叶片铁元素的二维分布图,并发表了“Femtosecond laser spectrochemical analysis of plant samples”(Laser Phys.Lett.3, No.1, 21-25, 2006)。

            

2007年至2010年,以Kaiser博士为代表的研究团队利用μCT与飞秒激光诱导击穿光谱技术(LIBS)及LA-LCP-MS等技术,对向日葵等植物组织中重金属元素吸收积累进行了研究分析,先后发表论文:

1)Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by Femto-second laser induced breakdown spectroscopy. Microscopy research and technique 70:147-153, 2007;

2)Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues. SpectrochimicaActa Part B 62:1597-1605;

3)Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A 93:917-922, 2008;

4)Multi-instrumental analysis of tissues of Sunflower plants treated with Silver(I) ions—plants as bioindicators of environmental pollution

5)Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. SpectrochimicaActa Part B 64:67-73, 2009;

6)Sunflower plants as bioindicators of environmental pollution with lead(II) ions. Sensors 9:5040-5058, 2009;

7)Detection of lead in Zea mays by dual-energy X-ray Microtomography at the SYRMEP Beamline of the ELETTRA Synchrotron and by Atomic Absorption Spectroscopy. Microscopy Research and Technique 73:638-649, 2010;

8)Determination of plant thiols by liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce treated by lead(II) ions. Electroanalysis 22 No.11:1248-1259, 2010

           

在这些研究中,CEITEC/Atomtrace LIBS研究团队不仅最早利用LIBS技术作出完整叶片元素分布图,还最早利用LIBS技术与显微CT(μCT)相结合进行三维化学成像构建,同时还开展了小鼠肾脏、蛇骨、古生物牙齿等动物样品的LIBS元素分析研究。

2012年,Kaiser博士等根据多年的研究成果和同行研究情况,撰写发表了综述性文章“Trace elemental analysis by Laser-induced breakdown spectroscopy---biological applications”(Surface Science Report 67:233-243, 2012)。上述研究成果奠定了以Kaiser博士等为代表的激光光谱学实验室LIBS技术在全球生命与环境科学应用领域的领先地位。

在研究植物养分利用与重金属毒害时,LIBS技术经常会与叶绿素荧光技术联合应用。2012年,CEITEC激光光谱学实验室研究团队与PSI公司合作,在《SpectrochimicaActa Part B》发表了“Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for induxrial biotechnology”,该研究利用LIBS技术和特制液体样品激光作用室,分析了藻类培养液与生物膜中钾、镁、钙、钠等与藻类至关重要的元素及铜等毒性重金属元素积累。

印度阿拉哈巴德大学则通过FP100叶绿素荧光仪(FluorCam的非成像版)和LIBS技术结合,研究了小麦经过重金属处理,植物体内元素含量变化与叶绿素荧光光合特性的关系。研究成果连续发表了多篇文献(Tripathi,2016;Tripathi,2015)

  
      图18. 左:LIBS藻类测量方案;右:藻类生物膜脉冲激光剥蚀孔

关于本文涉及到的仪器技术详细信息请访问北京易科泰生态技术有限公司官网,或者与我们联系获取技术快讯与文献原文。

易科泰生态技术致力于引进、消化、吸收和创新国际先进生物生态科研技术,提供植物表型分析、作物胁迫敏感性与抗性检测、光养生物反应器/藻类培养与在线监测、生态毒理学检测技术方案和实验服务与合作。旗下的Ecolab实验室目前配备有FluorCam封闭式荧光成像系统、FluorCam封闭式荧光成像系统、FluorCam便携式荧光成像仪、FL3500叶绿素荧光仪、FluorPen手持式叶绿素荧光仪、AquaPen藻类荧光仪、PolyPen手持式植物光谱测量仪、SpectraPen LM500手持式光谱仪、PlantPen手持式光谱仪、FMT150藻类培养与在线监测系统、MC1000 8通道藻类培养与在线监测系统、MicroMac1000全自动营养盐分析监测系统、FMS CO2/O2呼吸测量分析系统等,并与中科院植物所、中科院水生所、中国农科院、陕西师范大学等建立了长期技术合作交流关系。欢迎联系开展实验合作与技术培训。邮箱:eco-lab@eco-tech.com.cn,info@eco-lab.cn; 电话:010-62615899

参考文献:
1.Lu, C.M., Zhang, J.H., Zhang, Q.D., Li, L.B., Kuang, T.Y., 2001. Modification of photosystem II photochemistry in nitrogen deficient maize and wheat plants. J. Plant Physiol. 158, 1423–1430.
2.Lu, C.M., Zhang, J.H., 1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plant. J. Exp. Bot. 50, 1199–1206.
3.Sivak, M. N., Dietz, K. J., Heber, U., and Walker, D. A. (1985). The relationship between light-scattering and chlorophyll a fluorescence during oscillations in photosynthetic carbon assimilation. Arch. Biochem. Biophys. 237, 513–519
4.Abadia, J., Rao, I. M., and Terry, N. (1988). Light scattering in vivo as a tool for mineral nutrient deficiency diagnosis in crop plants. J. Plant Nutr. 11, 423–434.
5.    Hebbern, C. A., Pedas, P., Schjoerring, J. K., Knudsen, L., and Husted, S. (2005). Genotypic differences in manganese efficiency: Field experiments with winter barley (Hordeum vulgare L.). Plant Soil 272, 233–243
6.Nedbal L, Soukupová J, Kaftan D, Whitmarsh J & Trtílek M. 2000. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis research 66, 3 – 12
7.Li, G. et al. 2012. Effects of nitrogen on photosynthetic characteristics of leaves from two different stay-green corn (Zea mays L.) varieties at the grain-filling stage. Can. J. Plant Sci. 92, 671-680
8.Vaculík M, et al. 2015. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety 120, 66–73
9.Hida, E. et al. 2014. The influence of stress analyzed by the emitted fluorescence changes. IOSR J. Engineering. 4(4), 38-43
10.Küpper H, Setlík I, Trtílek M, Nedbal L. 2000. A microscope for two-dimensional measurements of vivo chlorophyll fluorescence kinetics using pulsed measuring light, continuous actinic light and saturating flashes. Photosynthetica, 38: 553-570
11.Küpper H, et al. 2007. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist, 175: 655-674
12.Higo S, et al. 2017. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae, 61:63-70
13.Andresen E, et al. 2016. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol., 210(4):1244-1258
14.Peng H, et al. 2013. Toxicity and Deficiency of Copper in Elsholtzia splendens Affect Photosynthesis Biophysics, Pigments and Metal Accumulation. Environ. Sci. Technol., 47 (12): 6120-6128
15.Peng H, et al. 2012. Differences in copper accumulation and copper stress between eight populations of  Haumaniastrum katangense, Environmental and Experimental Botany, 79: 58- 65
16.Leitenmaier B, et al. 2011. Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment, 34: 208-219
17.Küpper H, et al. 2009. Complexation and Toxicity of Copper in Higher Plants. I. Characterization of Copper Accumulation, Speciation, and Toxicity in Crassula helmsii as a New Copper Accumulator. Plant Physiology, 151: 702-714
18.Küpper H, et al. 2008. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytologist, 179(3): 784-798
19.Maarschalkerweerd M, et al. 2015. Recent developments in fast spectroscopy for plant mineral analysis. Front. Plant Sci. 6:169
20.Leal M C, et al. 2015. Concurrent imaging of chlorophyll fluorescence, Chlorophyll a content and green fluorescent proteins-like proteins of symbiotic cnidarians. Marine Ecology, DOI: 10.1111/maec.12164
21.Tripathi D K, et al. 2015. Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicology and Environmental Safety, 113:133-144
22.Tripathi D K, et al. 2016. LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. Journal of Photochemistry & Photobiology, B: Biology 154: 89-98


互联网
文章推荐