分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

生物发光技术在生命科学中的应用(二)

2020.6.09
头像

王辉

致力于为分析测试行业奉献终身

为了进一步提高检测基因的效率,我们对萤光素酶基因序列的密码子进行了优化,使得它在多种哺乳细胞中的表达水平提高了5~10倍;同时,为了减少对基因的非特异性调控,我们也对萤光素酶的载体进行了优化,去除了载体上哺乳动物转录因子结合序列的保守序列,从而大大降低了实验的本底,显着提高了实验的相对信号强度。优化后的萤光素酶报告基因可以成功地应用在各项生物研究领域中,例如对肿瘤坏死因子信号转导的研究。肿瘤坏死因子是由单核- 巨噬细胞产生的能致肿瘤细胞坏死的活性因子,能加强中性粒细胞的吞噬和消化功能,促进其粘附于血管内皮和迁移出血管之外,并能激活转录因子NF- B调控的包括IL-1、GM-CSF在内的多种基因的表达。在外源表达NF- B萤光素酶报告基因的HEK293 细胞中,肿瘤坏死因子的刺激可以有效地使萤光素酶的表达提高1000 倍以上(图2A)。同样的检测方法也可以成功地检测肿瘤坏死因子阻断剂对肿瘤坏死因子生物活性的阻断效率(IC50=0.77 nmol,图2B)。

2014102711244225.jpg

3 生物发光的其它应用

生物发光的强度取决于酶促化学反应中的各个反应成分的浓度,包括荧光素酶浓度、ATP浓度和萤光素酶底物即萤光素的浓度。通常,在生物发光的检测体系中,如果保持其它成分的浓度过量且恒定,就可以检测与生物活性相关的某个特定成分的浓度变化。我们上面谈到的用萤光素酶作为报告基因来监测基因转录活性的实验,就是把萤光素酶浓度和基因转录活性直接关联起来,萤光素酶浓度是我们的最终监测目标。此外,如果我们固定萤光素酶的浓度并使其过量,生物发光还可以用来监测与ATP或萤光素浓度相关的生物学活性(图3)。

通过检测萤光素的浓度来监测某一生物学活性的实验原理是:在萤光素上添加一个化学基团进行修饰,建立一个萤光素酶无法识别的"修饰"底物,而只有通过特定的生物反应切除这个化学基团,萤光素才能恢复活性,酶促反应才能发生,这样我们就可以把生物发光的强度和这个特定的生物反应联系起来[1]。如图4所示,Asp-Glu-Val-Asp-6'-aminoluciferin是一个没有活性的萤光素衍生物,只有当半胱氨酸-天冬氨酸蛋白酶(caspase-3)存在并切除这个四肽的序列,释放出游离的萤光素时,萤光素酶酶促反应才能发生。因为半胱氨酸-天冬氨酸蛋白酶的活性是检测细胞凋亡的一个重要指标,这样的设计使生物发光成为一个有效的检测细胞凋亡的手段。当然这一设计也可以用于运用荧光的细胞凋亡检测上,即把同样四肽的序列加到荧光染料Rhodamine110上。但由于生物发光独特的低表达和高灵敏度,在相同的实验条件下,运用生物发光研究细胞凋亡,其敏感性比运用荧光技术高将近一百倍(图4)。类似的设计也可以用来利用生物发光检测其它蛋白酶的活性,比如caspase-8、caspase-9、二肽基肽酶Ⅵ(DPPIV)、caspase-3、钙蛋白酶(calpain)、蛋白酶体(proteosome)等,并且还可以检测其它如CYP450活性、单氨氧化酶等的酶促反应[2]。

生物发光最早用于检测ATP的浓度,并且迄今为止仍然是快速检测细胞活力最广泛使用的方法之一[4]。与基于荧光的细胞活力检测方法(如使用tetrazolium)相比,用生物发光来检测哺乳细胞的生物活性,其敏感度要高达一百倍以上,而且只需要5 min。用生物发光来检测细菌的生物活性,灵敏度非常高,细菌个数小于10时,都可以被检测到。用生物发光检测ATP的方法还可用于检测消耗ATP的生物酶的浓度。以激酶为例,由于它可以作用于不同的磷酸盐受体,包括蛋白、脂类和多糖底物,这种方法可以作为一个通用的检测激酶活性的手段。最近,我们利用cAMP对蛋白激酶A的调控和蛋白激酶A的激酶反应对ATP的消耗建立了一个检测cAMP浓度变化的生物发光检测方法[5]。具体来说,细胞内cAMP的浓度可调节蛋白激酶A 的活性,而蛋白激酶A被激活后催化相应的磷酸化反应则需要消耗ATP,这样一来细胞内ATP浓度就会降低,因此,我们检测到的ATP的浓度就与蛋白激酶A的活性成反比,也与cAMP的浓度成反比。由于我们能够将生物发光和ATP浓度直接关联起来,所以我们建立了一个细胞内检测G蛋白-偶联受体活性或磷酸去脂酶活性的快速敏感的检测方法。

2014102711312305.jpg

4 结语

生物发光在复杂的生物有机体研究中具有巨大的潜力和价值。无论是它在很低的浓度下就可以发出清晰并定量的信号这一特性,还是它在哺乳细胞中低本底的优点,都使得生物发光技术在揭示生命奥秘的过程中拥有独特的地位。因此,生物发光检测技术必将在基础生命科学研究和新药开发等诸多领域发挥越来越强大的作用。(生物谷Bioon.com)

2014102711339669.jpg

参考文献:

1. O'Brien MA, Daily WJ, Hesselberth PE,Moravec RA, Scurria MA, Klaubert DH, Bulleit RF, Wood KV. Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen , 2005,10(2):137~148
2. Cali JJ, Ma D, Sobol M, Simpson DJ, Frackman S, Good TD, Daily WJ, Liu D. Luminogenic cytochrome P450 assays. Expert Opin Drug Metab Toxicol , 2006,2(4):629~645
3. Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol , 2007,5(1):127~136
4. Riss TL, Moravec RA. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell based cytotoxicity assays. Assay Drug Dev Technol , 2004,2(1):51~62
5. Kumar M, Hsiao K, Vidugiriene J, Goueli SA. A bioluminescent-based, HTS-compatible assay to monitor G-protein-coupled receptor modulation of cellular cyclic AMP. Assay Drug Dev Technol , 2007,5(2):237~245


互联网
文章推荐