分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

基于数字PCR的单分子DNA定量技术研究进展(四)

2020.6.23
头像

王辉

致力于为分析测试行业奉献终身

NGS 是一种识别和确认未知致病菌的前景广阔的技术,然而其在生物防御和公共健康应用等方面的时效性,却往往因为缺乏快速、有效、可靠的自动DNA样品制备方法而受到限制。为了突破这种限制,Kim 等设计了一种基于流体分布元件的数字微流体(DMF) 平台,使得多子系统模块能够进入自动NGS库样品制备系统。通过一种新型毛细管接口,可以实现液体在DMF设备与外部流体模块间的高重复性转移,使得流路连续,且小滴样品能够在一个完整的系统内得到处理。这里,该技术强调了DMF元件平台和NGS 样品制备流程中自动运行毛细管接口的效用。将毛细管接口与一种嵌入式非接触电导检测器连接,DMF设备实现了目标分析物从样品流到小液滴的闭环自动片段采集。NGS 中重复次数最多的缓冲液交换与样品清洗通过使用一种磁珠解决,实现了DMF平台上平均DNA回收率为(80±4.8)%。

 

先天性糖基化缺陷是由于机体缺少糖基化作用,主要影响到N 相关途径造成的。至少40% 的先天性糖基化缺陷病人在诊断过程中没有得到分子水平的确认。Jones 等通过已经导致先天性糖基化缺陷基因的下一代测序验证的研究,从分子水平提高了诊断先天性糖基化缺陷的水平。12例未知样本致病突变的先天性糖基化缺陷病人作为阳性对照进行NGS验证,分别采用RainDance 与Fluidigm 平台( dPCR) 进行序列富集和目标扩增,SOLiD平台用于测序和扩增产物。进而通过NextGENe 进行生物信息学分析。结果表明,12个阳性对照的致病突变通过NGS都得以确认。在病人诊断过程中,NGS的发展使实验室诊断多基因与分析逐个基因相比成本消耗更低、速度更快、效率更高。临床实验室的下一代测序数据分析结果同样支持这项技术,推广使用这项技术至关重要。

 

4 总结与展望

 

生物学的基础研究和分子技术的前进伴随着更精确和更灵敏的测量技术发展。值得一提的是,dPCR具有测量独立性与无需任何校准物的特点。因此,该技术是潜在的核酸测量基准方法,并从原理上为核酸计量提供了保证。相比其他方法,dPCR作为绝对定量方法能准确定量目标DNA和提供可靠的定量数据。商业化dPCR 仪器( 如Fluidigm 公司的BioMark System)的大量出现进一步推动和扩大了该技术的发展和应用范围。

 

dPCR技术及其应用凸显了单分子定量技术的潜力。不久,微流体dPCR就会突破反应速度和体积的限制,实现自动化和高通量的应用。核酸测序将是基于dPCR的单分子扩增技术最重要的应用领域。dPCR的克隆扩增可以减少下一代测序的时间和成本,并使个人基因组测序得以实现。我们期望在不远的将来,这项技术的发展将对单分子核酸扩增领域产生深远影响,在分子生物学和医学等基础研究和应用方面发挥更大的作用。

 

参考文献

[1] Keer J T , Birch L. Essentials of Nucleic Acid Analysis: A Robust Approach. London: Royal Society of Chemistry, 2008

[2] Zhang C, Xing D. Single-molecule DNA amplification and analysis using microfluidics.Chem Rev, 2010, 110 (8): 4910-4947

[3] Vogelstein B, Kinzler K W. Digital PCR. Proc Natl Acad Sci USA,1999,96(16): 9236-9241

[4] Bhat S, Herrmann J, Armishaw P, et al. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem, 2009, 394(2): 457-467

[5] Bustin S A, Benes V, Garson J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem , 2009, 55 (4 ): 611-622

[6] Burns M, Burrell A, Foy C. The applicability of digital PCR for the assessment of detection limits in GMO analysis. European Food Research and Technology, 2010, 231 (3 ): 353-362

[7] Sykes P J , Neoh S H , Brisco M J, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992,13(3): 444

[8] Olga K, Irina L, James B, et al. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res, 1997,25 (10 ): 1999-2004

[9] Devin D, Hai Y, Giovanni T, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations . Proc Natl Acad Sci USA, 2003,100 (15): 8817-8822

[10] Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA, 2005, 102 (45): 16368-16373

[11] Frank D, Meng L, Yiping H, et al. BEA Ming: single-molecule PCR on micro particles in water-in-oil emulsions. Nat Methods, 2006, 3 (7): 551-559

[12] Liu J , Hansen C, Quake S R. Solving the " world-to-chip" in terface problem with a microfluidic matrix. Anal Chem,2003, 75(18): 4718-4723

[13] Dube S, Qin J , Ramakrishnan R. Mathematic alanalysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One , 2008, 3 (8): e2876

[14] Heyries K A, Carolina T, Michael C, et al. Megapixel digital PCR. Nat Methods, 2011,8 (8): 649-651

[15] Sanders R, Jim F, Huggett, et al. Evaluation of digital PCR for absolute DNA quantification. Anal Chem, 2011, 83(17): 6474-6484

[16] Heid C A, Stevens J, Livak K L, e t al. Real time quantitative PCR. Genome Res, 1996, 6 (10): 986-994

[17] Morrison T B, Weis J J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques, 1998, 24(6): 954-958 , 960 , 962

[18] 赵锦荣, 白玉杰, 王胜春, 等.新型MGB探针在沙眼衣原体实时PCR检测中的应用. 生物化学与生物物理进展, 2003, 30(3): 466– 470 Zhao J R, Bai Y J , Wang S C, et al. Prog Biochem Biophys, 2003,30(3): 466-470

[19] Corbisier P, Somanath B, Lina P, et al. Absolute quantification of genetically modified MO N810 maize(Zea mays L.) by digital polymerase chain reaction.Anal Bioanal Chem, 2009, 396 (6):2143-2150

[20] Terry C F, Shanahan D J , Ballam L D, et al. Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan , Scorpion, and SYBR GreenⅠ chemistries. J AOAC international, 2002, 85 (4): 938- 944

[21] Pohl G, Shih I M. Principle and applications of digital PCR. Expert Re v Mo l Di agn , 2 00 4, 4(1 ): 41- 47

[22] Oehler V G, Qin J, Ramakrishnan R, et al. Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR. Leukemia, 2008, 23(2): 396-399

[23] Chan M, Mei W C, Ting W L, et al . Evaluation of nanofluidics technology for high-through put SNP genotyping in a clinical setting. J Mol Diagn, 2011, 13 (3): 305-312

[24] Ropers H H. New perspectives for the e lucidation of genetic disorders . Am J Hum Genet,2007, 81(2 ): 199-207

[25] Lupski J R. Genomic rearrangements and sporadic disease. Nat

Genet, 2007, 39: S43-S47

[26] Slamon D J, Clark G M , Wong S G, et al . Human breast cancer:correlation of relapse and survival with amplification of the HER-2 /neu oncogene .Science, 1987, 235 (4785): 177

[27] Qin J, Jones R C, Ramakrishnan R. Studying copy number variations using a nanofluidic platform. Nucleic Acids Res, 2008,36 (18): e116

[28] Lo Y M D. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasman ucleic acid analysis: a review of the current state of the art. BJOG: An International J Obstetrics&Gynaecology, 2009, 116 (2): 152-157

[29] Lo Y M D, Fiona M F, Chan K C A, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA, 2007, 104(32): 13116 -13121

[30] Fan H C, Quake S R. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem, 2007, 79 (19): 7576-7579

[31] Lo Y M, Nancy B Y T , Rossa W K C, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med , 2007, 13 (2): 218-223

[32] Lun F M, Allen C K, Yeung L T, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem, 2008, 54(10): 1664-1672

[33] 郭奇伟,周裕林.唐氏综合征的无创产前诊断研究进展. 中国优生与遗传杂志, 2010,18(4): 137-139

Guo Q W, Zhou Y L. Chin J Birth Health & Hered, 2010, 18(4):137-139

[34] BioMark. BioMark Advanced Development Protocol 10. Absolute quantitation using the digital array; Fluidigm (Fluidigm Corporation, S.F)

[35] White A K, Michael V,Oleh I P, et al. High-through put micro fluidic single-cell RT-qPCR. Proc Natl Acad Sci USA, 2011,108(34): 13999-14004

[36] Spurgeon S L, Jones R C, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One , 2008, 3(2): e1662

[37]Warren L,David B, Irving L W ,et al.Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA , 2006,103(47):17807-1 7812

[38] Guo G , Huss M, Tong G Q, et al. Resolution of cell fated ecisions revealed by single-cell gene expression an alysis from zygote to blastocyst. Dev Cell , 2011,18 (4): 675-685

[39] Ottesen E A , Jong W H, Stephen R Q, et al. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria.Science ,2006,314 (5804): 1464-1467

[40] Tadmor A D, Elizabeth A O , Jared R L, et al. Probing in dividual environmental bacteria for viruses by using microfluidic digital PCR. Science, 2011,333(6038): 58-62

[41] Braslavsky I, Hebert B, Kartalov E, et al. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA,2003, 100 (7): 3960-39 64

[42] Eid J, Fehr A, Gray J, et al. Real-time DN A sequencing from single polymerase molecules . Science, 2009, 323 (5910): 133-138

[43] Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872 ): 106 -109

[44] White R A , Blainey P C, Fan H C, et al . Digital PCR provides sensitive and absolute calibration for high throughput sequencing.BMC Genomics, 2009, 10:116

[45] Zernant J , Schubert C, Im K, et al. Analysis of the ABCA4 gene by next-generation sequencing . Invest Ophthalmol Vis Sci, 2011,52(11): 8479-8487

[46] Kim H , Bartsch M S, Renzi R F, et al. Automated digital microfluidic sample preparation for next-generation DNA sequencing. J Lab Autom , 2011, 16(6): 405-414

[47] Jones M A, Bhide S, Chin E, et al. Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation. Genet Med, 2011,13 (11): 921-932


互联网
文章推荐