分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

非损伤性扫描离子选择电极技术及其在高等植物...(三)

2020.7.27
头像

王辉

致力于为分析测试行业奉献终身



图3
H+和O2 流动速率的同时测量.

(a)显微照片显示金属氧电极与玻璃H+电极同时测量百合花粉管生长过程中H+离子和O2分子进出的变化;(b)在花粉管线粒体密集区域,
或称固有碱化带区域,同时存在的H+外流和O2内流现象.

 

 

2.2 SIET与荧光显微技术结合证明磷脂酰肌醇转运蛋白与根毛发生有关

Vincent 等在鉴定出拟南芥磷脂酰肌醇转运蛋白家族 (PITPs)的一种成份AtSfh1p 之后,将显微荧光技术与SIET
结合,从细胞的内部和外部同时证明AtSfh1p 在根毛顶端生长过程中,具有调节细胞内质膜磷酸肌醇极性运输、Ca2+信号传递和细胞骨架的功能.在植物细胞的极性生长机理研究方面向前推进了一步.

拟南芥缺失根毛突变体AtSfh1p)不仅在根毛形态上有变化,不规则弯曲,失去重力极性;而且在Ca2+信号传递方面也有异常[26].
利用Ca2+荧光显微技术可测定细胞内部Ca2+浓度梯度,而利用SIET可测得外部Ca2+流动情况.结果表明野生型的根毛只有在生长旺盛的顶尖区,Ca2+的内流速度快,而突变株的根毛Ca2+流动的方向和大小明显不同于野生型的根毛.非重力方向的根毛,四周表面都可以检测到Ca2+的内流,而且流速高于野生型的两倍左右. [26]

 2.3 多离子电极的同时应用证明Ca2+及H+在植物感知重力变化中起作用

美国北卡罗来纳州立大学植物系NSCORT
研究组受美国宇航局资助,研究植物感知重力的遗传及生理机理,通过对重力非敏感的拟南芥突变体的研究,许越等发现植物根部在相对于地球重力不同的位置的情况下,其H+和Ca2+的流动在根部的不同位置呈现出不同的变化,显示出及H+和Ca2+可能在植物感知重力变化的过程中扮演一定的角色(图4)
[6].



图4
利用SIET 对重力非敏感植物突变体Ca2+及H+变化的同时测量.

(a)拟南芥突变体(ARG)及其野生型拟南芥(WS);(b)ARG在重力变化刺激下的 Ca2+及H+变化与野生型对照有明显的区别.

 

3 总结及展望

经过多年的改进,SIET数据的生成、采集以及校准等方面不断得到完善.特别是应用SIET
强大的三维立体测量方式,研究人员可以获得其他电生理技术无法测到的被测样品某些点的特异活性[8,27-29]. SIET 是一个与膜片钳[30]无论在时间分辨率还是在空间分辨率上都不相同的技术,但两者在应用过程中可以极好地相互补充.由于SIET
技术的出现,人们对于生物体特异离子转运系统的研究,在灵敏度上,时间和空间分辨率上已经被大大地提高了,并已成熟地与细胞和分子生物学技术、其他电生理技术和显微荧光成像技术配合使用.SIET
技术将在主动运输离子或分子泵和协同运输载体的研究方面发挥重大的作用.

分子生物学的进展使得我们能够对质膜转运载体分子加以确定、克隆和进行可控制的表达.当这些转运载体在分子水平方面通过在酵母、卵细胞等系统中的表达予以鉴定,或者某些细胞成份的物理结构和生理功能阐明之后,SIET
技术的非损伤性,多离子/分子同时测量及灵活的空间测量方式将在细胞和组织水平上的功能鉴定方面发挥重要的、甚至是无法替代的作用.

 

致谢

感谢匡廷云院士在身患重病的情况下对SIET
技术的关心与支持.同时感谢美国Duke大学裴真明教授所作的有益的讨论. 

 

参考文献

1.       
Kuhtreiber W M and Jaffe L F. Detection of extracellular calcium  gradients with a calciumspecific vibrating electrode. J. Cell Biol,1990,  110(5): 1565-1573

2.       
Shipley A M and Feijo J A. The use of the vibrating probe  technique to study steady extracellular currents during pollen  germination and tube growth. In Fertilization in Higher Plants  -Molecular and Cytological Aspects, Springer-Verlag. 1999, 17: 235-252.

3.       
Porterfield D M, Laskin J D, Jung S-K, et al. Proteins and lipids  define the diffusional field of nitric oxide. Measurement of nitric  oxide fluxes from macrophages using a self-referencing electrode. Am. J.  Physiol. Cell Physiol, 2001, 281(4): L904-912

4.       
Smith P J S and Trimarchi J R. Noninvasive measurement of  hydrogen and potassium ion flux from single cells and epithelial  structures. Am J Physiol Cell Physiol, 2001,280: C1-C11.10

5.       
Cao Z-S,Kang H-G. Zou S-B, et al. Application of Patch-clamp Technique into the Study of Cell Secretion. Progress in Biochemistry and Biophysics, 1992,19(1): 14-18

6.       
Xu Y. Introduction of the SIET. Raleigh, NC, YoungerUSA, Company. http://youngerusa. com/NY/Chinese/basics/04sanya _talk.php. [2004-06-06]

7.       
Schiefelbein J W , Shipley A M, Rowse P, et al. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta, 1992, 187: 455-459.

8.       
Richardson D C and Richardson J S. Teaching Molecular 3-D Literacy. Biochemistry and Molecular Biology Education,2002,30: 21-26.

9.       
Pfanz H and Heber U. Buffer capacities of leaves, leaf cells, and  leaf cell organelles in relation to fluxes of potentially acidic gases.  Plant Physiology, 1986,81: 597-602

10.   
Pierson E S, Miller D D, Callaham D A,  et al. Pollen-Tube Growth Is Coupled to the Extracellular Calcium-Ion  Flux and the Intracellular Calcium Gradient - Effect of Bapta- Type  Buffers and Hypertonic Media. Plant Cell, 1994,6(12): 1815-1828

11.   
Arif I, Newman I A, and Keenlyside N. Proton flux measurements from tissues in buffered solution. Plant, Cell and Environment,1995,18: 1319-1324

12.   
Demarest J R and Morgan J L M. Effect of pH buffers on proton  secretion from gastric oxyntic cells measured with vibrating  ion-selective microelectrodes. Biological Bulletin, 1995,189: 219-220

13.   
Kunkel J G, Lin L-Y, Heper P K,et al. The  strategic use of Good buffers to measure proton gradients about growing  pollen tubes. Cell Biology of Plant and Fungal Tip Growth. Amherst, IOS Press, 2001: 81-94

14.   
Cardenas L, Feijo J A, Kunkel J G , et al. Rhizobium  Nod factors induce increases in intracellular free calcium and  extracellular calcium influxes in bean root hairs. Plant J ,1999,19(3): 347-352

15.   
Huang J W W, Shaff J E, Grunes D L,et al.Aluminum Effects On  Calcium Fluxes At the Root Apex of Aluminum-Tolerant and  Aluminum-Sensitive Wheat Cultivars. Plant Physiology,1992, 98(1):  230-237

16.   
Kochian L V, Shaff J E, Kuhtreiber W M,et al. Use  of an Extracellular, Ion-Selective, Vibrating Microelectrode System For  the Quantification of K+, H+, and Ca2+ Fluxes in Maize Roots and Maize  Suspension Cells. Planta, 1992,188(4): 601-610

17.   
Degenhardt J, Larsen P B, Howell S H,
et al. Aluminum  resistance in the Arabidopsis mutant alr-104 is caused by an  aluminum-induced increase in rhizosphere pH. Plant Physiology ,1998,117(1): 19-27

18.   
Miller D D, Callaha m D A, Grass D J,et al. Free Ca2+ Gradient in Growing Pollen Tubes of Lilium.Journal of Cell Science, 1992,101: 7-12

19.   
Felle H H and Hepler P K. The cytosolic Ca2+  concentration gradient of Sinapis alba root hairs as revealed by  Ca2+-selective microelectrode tests and fura-dextran ratio imaging.  Plant Physiology, 1997,114(1): 39-45

20.   
Holdaway-Clarke T, Feijo J A, Hackett G A, et al. Pollen tube  growth and the intracellular cytosolic calcium gradient oscillate in  phase while extracellular calcium influx is delayed. Plant Cell, 1997,9  (11):1999-2010.

21.   
Holdaway-Clarke T, Hackett G A, Feijo J A,et  al. Oscillations of cell expansion rate, cytoplasmic calcium, and  calcium influx in the pollen tube. J of General Physiology, 1998,112(1):  35A-35A

22.   
Shabala S N, Newman I A, and Morris J. Oscillations in H+ and Ca2+
ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiology, 1997,113(1): 111-118

23.   
Feijo J A, Sainhas J, Hackett G R,
et al.  Growing pollen tubes possess a constitutive alkaline band in the clear  zone and a growth-dependent acidic tip. Journal of Cell Biology,1999,144(3): 483-496

24.   
Newman I A. Ion transport in roots: measurement of fluxes using  ion-selective microelectrodes to characterize transporter function.  Plant Cell Environ, 2001,24(1): 1-14

25.   
Messerli M A and Robinson K R. Cytoplasmic acidification and  current influx follow growth pulses of Lilium longiflorum pollen tubes.  Plant J, 1998,16(1): 87-91

26.   
Vincent P, Chua M, Xu Y, et al. A Sec14p-nodulin domain  phosphatidylinositol transfer protein polarizes membrane growth of  Arabidopsis thaliana root hairs. J. Cell Biol. 2005,168(5): 801-812.

27.   
Xu Y. How does the SIET works? Raleigh, NC, YoungerUSA, Company. http://www.youngerusa.com/movies/SIET.  [2004-06-06]

28.   
Pei Z M, Murata Y, Benning G, et al. Calcium  channels activated by hydrogen peroxide mediate abscisic acid  signalling in guard cells. Nature, 2000, 406(6797): 731-734

29.   
He Y, Tang R-H, Hao Y,
et al. Nitric Oxide Represses the Arabidopsis Floral Transition. Science,2004, 305(5692): 1968-1971

30.    
Xu,  Y. and Qiu Z. Patch-Clamp Technique and Its Applications to and  Prospects for the Studies of Higher Plant Cells. Plant Physiology  Communications, 1993, 29(3): 169-174.


互联网
文章推荐