分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

详解无线设计中的LNA和PA运行 (二)

2020.10.12
头像

王辉

致力于为分析测试行业奉献终身

MACOM MAAL-011111 是用于更高频率的 GaAs LNA,可支持 22 至 38 GHz 运行(图 5)。该器件可提供 19 dB 的小信号增益和 2.5 dB 的噪声系数。此 LNA 表面上是一个单级器件,但其内部实际有三个级联级。第一级针对最低噪声和中等增益进行了优化,后续级别提供额外增益。 

6

图 5:对用户来说,MAAL-011111 LNA 表面上是一个单级放大器,但其内部使用了一系列增益级,旨在最大化输入到输出信号路径 SNR,同时在输出端增加显著增益。(图片来源:MACOM)

 

与 Analog Devices 的 LNA 类似,MAAL-011111 只需要一个低压电源,且尺寸仅为 3×3 mm,极为小巧。用户可以通过将偏置(电源)电压设置在 3.0 和 3.6 V 之间的不同值来调整和权衡某些性能规格。建议电路板布局显示保持适当的阻抗匹配和地平面性能所需的关键印刷电路板铜皮尺寸(图 6)。 

7

图 6:建议的布局,充分利用了 MACOM 的 MAAL-011111,同时提供输入和输出阻抗匹配。注意,对于阻抗控制型传输线以及低阻抗地平面,使用印刷电路板铜皮(尺寸以毫米为单位)。(图片来源:MACOM)

 

PA 驱动天线

 

与 LNA 困难的信号捕获挑战相反,PA 则是从电路中获取相对强的信号,具有很高的 SNR,且必须用来提高信号功率。与信号有关的所有通用系数均已知,如幅值、调制、波形、占空比等。这就是信号处理图中的已知信号 / 已知噪声象限,是最容易应对的。

 

PA 的主要参数为相关频率下的功率输出,其典型增益在+10 至+30 dB 之间。能效是 PA 参数中仅次于增益的又一关键参数,但是使用模型、调制、占空比、允许失真度以及受驱信号的其它方面会使任何能效评估变得复杂。PA 的能效在 30 到 80% 之间,但这在很大程度上是由多种因素决定的。线性度也是 PA 的关键参数,与在 LNA 一样用 IP3 值判定。

 

尽管许多 PA 采用低功耗 CMOS 技术(最高约 1 至 5 W),但在最近几年里,其它技术业已发展成熟并被广泛应用,在考虑将能效作为电池续航时间和散热的关键指标的更高功率水平的情况下,尤其如此。在需要几个瓦特或更高功率的情况下,采用氮化镓(GaN) 的 PA 在更高功率和频率(典型值为 1 GHz)下具有更优的能效。尤其是考虑到能效和功率耗散时,GaN PA 极具成本竞争力。

 

Cree/Wolfspeed CGHV14800F(1200 到 1400 MHz,800 W 器件)是最新的一些基于 GaN 的 PA 代表。这种 HEMT PA 的能效、增益和带宽组合对脉冲 L 波段雷达放大器进行了优化,使设计人员能够在空中流量管制(ATC)、天气、反导和目标跟踪系统等应用中找到许多用途。使用 50 V 电源,提供 50% 及更高的典型能量转换效率,并采用 10 ×20 mm 陶瓷封装,带有用于冷却的金属法兰(图 7)。 

8

图 7:CGHV14800F 1200 至 1400 MHz,800 W,GaN PA 具有金属法兰的 10 ×20 mm 陶瓷封装必须同时满足困难的射频和散热要求。出于机械和热完整性考虑,注意安装法兰时将封装旋紧(不焊接)到印刷电路板。(图片来源:Cree/Wolfspeed)

 

CGHV14800F 采用 50 V 电源供电,通常提供 14 dB 的功率增益,能量转换效率> 65%。与 LNA 一样,评估电路和参考设计至关重要(图 8)。 

9

图 8:除了器件本身之外,为 CGHV14800F PA 提供的演示电路需要的元器件非常少,但物理布局和散热考虑很关键;考虑安装完整性和热目标,PA 通过封装法兰以螺钉和螺母(在底部,不可见)固定到板上。(图片来源:Cree/Wolfspeed)

 

许多规格表和性能曲线中同样重要的是功率耗散降额曲线(图 9)。该曲线显示了可用的功率输出额定值与外壳温度的关系,指示最大允许功率是恒定的 115°C,然后线性减小到 150°C 的最大额定值。 

10

图 9:由于其在输送功率方面的作用,需要 PA 降额曲线向设计人员显示允许输出功率随着外壳温度的升高而降低。这里,额定功率在 115⁰C 之后迅速下降。(图片来源:Cree/Wolfspeed)

 

MACOM 还提供了基于 GaN 的 PA,例如 NPT1007 GaN 晶体管(图 10)。其直流至 1200 MHz 的频率跨度适用于宽带和窄带射频应用。该器件通常以 14 到 28 V 之间的单电源工作,可在 900 MHz 提供 18 dB 的小信号增益。该设计旨在耐受 10:1 SWR(驻波比)不匹配,且不会发生器件退化。 

11

图 10:MACOM 的 NPT1007 GaN PA 跨越直流到 1200 MHz 的范围,适用于宽带和窄带射频应用。设计人员通过各种负载拉伸图获得额外支持。(图片来源:MACOM)

 

除了显示 500、900 和 1200 MHz 时性能基础的图外,NPT1007 还支持各种“负载拉伸”图,为努力确保稳定产品(图 11)的电路和系统设计人员提供帮助。负载拉伸测试使用成对信号源和信号分析仪(频谱分析仪、功率计或矢量接收器)完成。

 

该测试要求看到被测设备(DUT) 的阻抗变化,以评估 PA 的性能(包括诸如输出功率、增益和能效等因素),因为所有相关的元器件值可能由于温度变化或由于围绕其标称值的公差带内的变化而改变。 

12

图 11:NPT1007 PA 的负载拉伸图超出了最小 / 最大 / 典型规格标准表,以在其负载阻抗偏离其标称值(初始生产公差以及热漂移会导致实际使用中出现这种情况)时显示 PA 性能。(图片来源:MACOM)

 

无论使用哪种 PA 工艺,器件的输出阻抗均必须由供应商进行充分特征化,使设计人员能将该器件与天线正确匹配,实现最大的功率传输并尽可能保持 SWR 一致。匹配电路主要由电容器和电感器构成,并且可实现为分立器件,或者制造为印刷电路板甚至产品封装的一部分。其设计还必须维持 PA 功率水平。再次重申,史密斯圆图等工具的使用,是理解并进行必要的阻抗匹配的关键。

 

鉴于 PA 较小的芯片尺寸和较高的功率水平,封装对 PA 来讲是一个关键问题。如前所述,许多 PA 通过宽的散热封装引线和法兰支撑以及封装下的散热片散热,作为到印刷电路板铜皮的路径。在较高功率水平(约高于 5 至 10 W),PA 可以有铜帽,使散热器可以安装在顶部,并且可能需要风扇或其它先进的冷却技术。

 

GaN PA 相关的额定功率和小尺寸意味着对热环境建模至关重要。当然,将 PA 本身保持在允许的情况或结温范围内是不够的。从 PA 散去的热量不能给电路和系统其它部分带来问题。必须考虑处理和解决整个热路径。

 

总结

 

从智能手机到 VSAT 端子和相控阵雷达系统等基于射频的系统正在推动 LNA 和 PA 性能的极限。这使得器件制造商不再局限于硅,而是探索 GaAs 和 GaN 以提供所需的性能。

 

这些新的工艺技术为设计人员提供了带宽更宽、封装更小、能效更高的器件。不过,设计人员需要了解 LNA 和 PA 运行的基础知识,才能有效地应用这些新技术。


互联网
文章推荐