分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

微波光子雷达及关键技术(六)

2020.10.13
头像

王辉

致力于为分析测试行业奉献终身

2.5 光模数转换

随着数字信号处理技术的飞速发展,雷达回波的信息提取基本上都在数字域完成。作为连接模拟域回波和数字信号间的桥梁,ADC在雷达接收机中发挥着重要的作用。由于ADC孔径抖动等原因,大的模拟带宽和高的有效位数在完全基于电子技术的ADC中难以兼得。因此,电ADC的性能往往成为限制宽带雷达发展的瓶颈。为突破电ADC的带宽瓶颈,具有大带宽、抗电磁干扰能力强等诸多优点的光子技术被引入到ADC系统中,构成了光子辅助ADC,使ADC发展到新的阶段。光子辅助ADC最早出现于20世纪70年代。经过40余年的发展,国内外学者提出了多种光子辅助ADC,将光子技术应用到了信号模拟预处理、采样保持、高速实时量化等多个方面。

光域信号预处理,是指将待转换的模拟电信号调制到光载波上,利用光器件的超大带宽实现对模拟信号的处理,以降低信号模数变换的难度,目前主要有信号时域拉伸[88-89]和信号复制[90-91]2种形式。时域拉伸型光子辅助ADC首先利用光脉冲在色散介质中的展宽来拉伸待转换的模拟信号,这等效为降低信号的瞬时带宽,因而采用低速电ADC即可完成信号的采样和量化。而信号复制型光子辅助ADC可在光域对待转换信号或其片段进行高质量复制,再将复制所得的多个相同信号在时域或频域展开,然后通过错位采样即可获得等效采样率的成倍提升。常用的光域信号复制方式包括时域上的多级间插[90]和复制缓存环[92],以及频域上的基于四波混频效应的多波长参量广播等。

光采样型光子辅助ADC利用激光脉冲对输入的电信号进行采样[93],基本结构如图21所示。锁模激光器输出光脉冲经复用送入电光调制器,其强度被待转换电信号所调制,光电探测器将光脉冲序列携带的电信号提取出来并送入电ADC进行量化。电ADC的高稳定度时钟信号由锁模激光器提供。由于电ADC的采样速率一般较低,可以在光电探测之前对光脉冲序列进行串并变换(即解复用)。这种光采样ADC利用了锁模激光器输出激光脉宽极窄,脉冲间隔时间抖动极小等特性,使传统电ADC因孔径抖动导致的噪声和失真大大降低。由于电光调制器具有几十GHz的调制带宽,光采样模数转换系统只需选用市场上ENOB高但模拟带宽较小的电ADC,便可实现高精度的射频带通采样。

图21、光采样型光子辅助ADC 的基本结构
Fig. 21 Schematic diagram of the photonic sampled ADC

光子技术同样可应用于模拟信号的实时量化。信号量化的本质是将待转换信号的瞬时幅度映射成多路可供比较器进行门限判决的强度脉冲,映射所得的并行支路越多,则量化位数越高。光量化方案中的这种映射主要由并行多路电光强度调制或光孤子自频移效应实现。在并行多路电光调制结构中,各支路具有不同的强度调制特性:不同的半波电压[94]、有相移的相同半波电压[95]以及二者的混合[96]。当调制端口输入的模拟电信号变化时,各调制支路输出的光强按不同的规律改变,经后续处理即可组合出不同的编码。而基于光孤子自频移效应的方案[97-98]先用待转换电信号调制光脉冲串的幅度,再利用频移与光脉冲幅度的关系将幅度信息映射到光波长域,最后通过光色散器件将不同波长的光分开。这种方案已经实现了6位的量化分辨率[99]

3、结论与展望

雷达是现代战争中极为重要的军事装备,是海、陆、空、天各兵种的“眼睛”。为了擦亮这只“眼睛”,下一代雷达向着高频率、超宽带、多功能一体化方向发展,以期在提高距离分辨率、改善目标识别成像等诸多性能的同时,又能提高雷达的隐蔽性与抗干扰性能。微波光子技术凭借其宽带、抗电磁干扰等特性,将逐步取代部分传统电技术在雷达系统中发挥作用。当前该领域的研究,已经从单元研究向系统研究转变,全面进入了雷达样机研制和功能演示阶段。但是微波光子雷达各关键技术的融合,系统指标的提升,转换能效,动态范围,可靠性等方面还需进一步提高以满足实战系统的需求。尤其是光电集成技术相对于纯电集成技术还较初步,这必将限制微波光子雷达系统的应用范围。但是科技因未知而美妙,因探索而精彩。通过研究人员在超低相噪光电振荡器、超宽带波形产生、多功能信号处理、光控真延时波束形成网络以及各技术之间融合的探索,一定能推动微波光子雷达系统的大发展。

参考文献(References

[1] Skolnik M I, Radar handbook[M]. 3rd Edition. New York: McGraw-Hill, 2008: 1-24.
[2] Chen X L, Guan J, Bao Z, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002-1018.
[3] Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv's distribution[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1284-1295.
[4] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38.
Chen Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11): 30-38.
[5] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239-251. Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239-251.
[6] Tavik G C, Hilterbrick C L, Evins J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3):1009-1020.
[7] Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431-1437.
[8] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.
[9] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[10] Pan S L, Zhu D, Zhang F Z. Microwave photonics for modern radar systems[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 23(3): 219-240.
[11] DARPA. Our research[EB/OL]. [2017-06-30]. https://www.darpa.mil/our-research.
[12] Community Research and Development Information Service. Projects & results[EB/OL]. [2017-06-30]. http://cordis.europa.eu/projects/home_en.html.
[13] NASA. Deep space network (DSN) [EB/OL]. [2017-06-30]. https://
www.nasa.gov/directorates/heo/scan/services/networks/txt_dsn.html.
[14] Goutzoulis A, Davies K, Zomp J, et al. Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased- array antennas[J]. Applied Optics, 1994, 33 (35): 8173-8185.
[15] Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays [J]. Applied Optics, 1996, 35(26): 5293-5300.
[16] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341.
[17] Ghelfi P, Laghezza F, Scotti F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34 (2): 500-507.
[18] Melo S, Pinna S, Bogoni A, et al. Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver[C]//17th IEEE International Radar Symposium (IRS). Piscataway, NJ: IEEE, 2016, doi: 10.1109/IRS.2016.7497379.
[19] Onori D, Laghezza F, Scotti F, et al. Coherent radar/lidar integrated architecture[C]//IEEE European Radar Conference (EuRAD). Piscataway, NJ: IEEE, 2015: 241-244.
[20] KRET has created a sample of photonic radar for the aircraft of the 6th generation[EB/OL]. [2017-06-30]. http://weaponews.com/news/11884-kret-has-created-a-sample-of-photonic-radar-for-the-aircraftof-the-6t.html
[21] Fu J, Pan S. Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing[J]. Optics Express, 2013, 21(18): 21218-21223.
[22] Fu J, Zhang F, Zhu D, et al. A photonic-assisted transceiver with wavelength reuse for distributed UWB radar[C]//IEEE International Topical Meeting on Microwave Photonics (MWP) and the 9th Asia-Pacific Microwave Photonics Conference (APMP). Piscataway, NJ: IEEE, 2014: 232-234.
[23] Fu J B, Pan S L. UWB-over-fiber sensor network for accurate localization based on optical time-division multiplexing[C]//The 12th IEEE International Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE, 2013, doi: 10.1109/ICOCN.2013.6617 197.
[24] Zheng J, Wang H, Fu J, et al. Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station[J]. Optics Express, 2014, 22(5): 4896-4907.
[25] Yao T, Zhu D, Ben D, et al. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology[J]. Optics Letters, 2015, 40(8): 1631-1634.
[26] Yao T, Zhu D, Liu S, et al. Wavelength-division multiplexed fiberconnected sensor network for SLource localization[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1874-1877.
[27] Zhang F, Guo Q, Wang Z, et al. Photonics-based broadband radar for high- resolution and real- time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274-16281.
[28] Li R, Li W, Ding M, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334-14340.
[29] Xiao X, Li S, Chen B, et al. A microwave photonics-based inverse synthetic aperture radar system[C]//CLEO: Science and Innovations. New York: Optical Society of America, 2017: JW2A. 144.
[30] Zou W W, Zhang S T, Wu K, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[C]//URSI Asia-Pacific Radio Science Conference. Piscataway, NJ: IEEE, 2016, doi:10.1109/URSIAP-RASC.2016.7883546.
[31] Yao X S, Maleki L. Converting light into spectrally pure microwave oscillation[J]. Optics Letters, 1996, 21(7): 483-485.
[32] Bagnell M, Davila-Rodriguez J, Delfyett P J. Millimeter-wave generation in an optoelectronic oscillator using an ultrahigh finesse etalon as a photonic filter[J]. Journal of Lightwave Technology, 2014, 32(6): 1063-1067.
[33] Peng H, Zhang C, Xie X, et al. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 2015, 33(13): 2707-2715.
[34] Pan S, Yao J. A frequency-doubling optoelectronic oscillator using a polarization modulator[J]. IEEE Photonics Technology Letters, 2009, 21 (13): 929-931.
[35] Zhu D, Pan S, Ben D. Tunable frequency-quadrupling dual-loop optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2012, 24 (3): 194-196.
[36] Zhu D, Liu S, Ben D, et al. Frequency-quadrupling optoelectronic oscillator for multichannel upconversion[J]. IEEE Photonics Technology Letters, 2013, 25(5): 426-429.
[37] Devgan P S, Urick V J, Diehl J F, et al. Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain[J]. Journal of Lightwave Technology, 2009, 27(15): 3189-3193.
[38] Yao X S, Maleki L. Multiloop optoelectronic oscillator[J]. IEEE Journal of Quantum Electronics, 2000, 36(1): 79-84.
[39] Cai S, Pan S, Zhu D, et al. Coupled frequency-doubling optoelectronic oscillator based on polarization modulation and polarization multiplexing[J]. Optics Communications, 2012, 285(6): 1140-1143.
[40] Yang B, Jin X, Zhang X, et al. A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser[J]. IEEE Photonics Technology Letters, 2012, 24(1): 73-75.
[41] Ozdur I, Mandridis D, Hoghooghi N, et al. Low noise optically tunable opto-electronic oscillator with Fabry–Perot etalon[J]. Journal of Lightwave Technology, 2010, 28(21): 3100-3106.
[42] Maleki L. Sources: The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730.
[43] Yao X S, Davis L, Maleki L. Coupled optoelectronic oscillators for generating both RF signal and optical pulses[J]. Journal of Lightwave Technology, 2000, 18(1): 73-78.
[44] Zhou W, Blasche G. Injection-locked dual opto-electronic oscillator with ultra- low phase noise and ultra- low spurious level[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 929-933.
[45] OEwave Corporation[EB/OL]. [2017-06-30]. http://www.oewaves.com.
[46] Eliyahu D, Sariri K, Taylor J, et al. Optoelectronic oscillator with improved phase noise and frequency stability[C]//Proceedings of SPIE: Photonic Integrated Systems. New York: SPIE, 2003, doi:10.1117/ 12.475834.
[47] Lou C, Huo L, Chang G, et al. Experimental study of clock division using the optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2002, 14(8): 1178-1180.
[48] Yang J, Yu J L, Wang Y T, et al. An optical domain combined dualloop optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2007, 19(11): 807-809.
[49] Rashidinejad A, Weiner A M. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability [J]. Journal of Lightwave Technology, 2014, 32(20): 3383-3393.
[50] Wang C, Yao J. Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(2): 542-553.
[51] Ye J, Yan L, Pan W, et al. Two-dimensionally tunable microwave signal generation based on optical frequency-to-time conversion[J]. Optics letters, 2010, 35(15): 2606-2608.
[52] Zhang F, Ge X, Pan S. Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping[J]. Photonics Research, 2014, 2(4): B5-B10.
[53] Simpson T B, Liu J M, Huang K F, et al. Nonlinear dynamics induced by external optical injection in semiconductor lasers[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1997, 9(5): 765.
[54] Zhou P, Zhang F, Guo Q, et al. Linearly chirped microwave waveform generation with large time- bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460-18467.
[55] Zhou P, Zhang F, Ye X, et al. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser [J]. IEEE Photonics Journal, 2016, 8(6): 1-9.
[56] Zhou P, Zhang F, Guo Q, et al. Reconfigurable radar waveform generation based on an optically injected semiconductor laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6), doi: 10.1109/JSTQE.2017.2699259.
[57] Li W, Wang W T, Sun W H, et al. Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM[J]. Optics Express, 2014, 22(7): 7446-7457.
[58] Jiang H Y, Yan L S, Ye J, et al. Photonic generation of phase-coded
microwave signals with tunable carrier frequency[J]. Optics Letters, 2013, 38(8): 1361-1363.
[59] Li W, Kong F, Yao J. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 2013, 31(23): 3780-3786.
[60] Zhang Y, Pan S. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter[J]. Optics Letters, 2013, 38(5): 766-768.
[61] Zhang Y, Zhang F, Pan S. Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(2): 651-660.
[62] Zhang Y, Ye X, Guo Q, et al. Photonic generation of linear-frequency modulated waveforms with improved time-bandwidth product based on polarization modulation[J]. Journal of Lightwave Technology, 2017, 35(10): 1821-1829.
[63] Kanno A, Kawanishi T. Broadband frequency-modulated continuous wave signal generation by optical modulation technique[J]. Journal of Lightwave Technology, 2014, 32(20): 3566-3572.
[64] Guo Q, Zhang F, Zhou P, et al. Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1320-1323.
[65] Yacoubian A, Das P K. Digital-to-analog conversion using electrooptic modulators[J]. IEEE Photonics Technology Letters, 2003, 15(1): 117-119.
[66] Saida T, Okamoto K, Uchiyama K, et al. Integrated optical digital-toanalogue converter and its application to pulse pattern recognition[J]. Electronics Letters, 2001, 37(20): 1237-1238.
[67] Liao J, Wen H, Zheng X, et al. Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection[J]. IEEE Photonics Technology Letters, 2013, 25(2): 126-128.
[68] Gao B, Zhang F, Pan S. Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter[J]. Optics Communications, 2017, 383: 191-196.
[69] Zou X, Pan W, Luo B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source [J]. Optics Letters, 2010, 35(3): 438-440.
[70] Wang W, Davis R L, Jung T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1996-2001.
[71] Gu X, Zhu D, Li S, et al. Photonic RF channelization based on seriescoupled asymmetric double-ring resonator filter[C]//The 7th IEEE International Conference on Advanced Infocomm Technology (ICAIT). Piscataway, NJ: IEEE, 2014: 240-244.
[72] Austin M W. Integrated optical microwave channeliser[C]//The IEEE Asia Communications and Photonics Conference and Exhibition (ACP). Piscataway, NJ: IEEE, 2009, doi: 10.1364/ACP.2009.ThE5.
[73] Xie X, Dai Y, Xu K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators[J]. IEEE Photonics Journal, 2012, 4(4): 1196-1202.
[74] Tang Z Z, Zhu D, Pan S L. Coherent RF channelizer based on dual optical frequency combs and image-reject mixers[C]. International Topical Meeting on Microwave Photonics (MWP 2017), Beijing, October 23-26, 2017.
[75] Zhu D, Chen W J, Chen Z W, et al. RF front-end based on microwave photonics[C]. The 12th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), the 22nd OptoElectronics and Communications Conference (OECC), and the 5th Photonics Global Conference (PGC), Singapore, July 31-August 4, 2017.
[76] Yi X, Huang T X H, Minasian R. Photonic beamforming based on programmable phase shifters with amplitude and phase control[J]. IEEE Photonics Technology Letters, 2011, 23(18): 1286-1288.
[77] Zhang Y, Wu H, Zhu D, et al. An optically controlled phased array antenna based on single sideband polarization modulation[J]. Optics Express, 2014, 22(4): 3761-3765.
[78] 张光义. 相控阵雷达瞬时带宽的几个问题[J]. 现代雷达, 1990, 12 (4): 1-10. Zhang Guangyi. Several problems of phased array radar instantaneous bandwidth[J]. Modern Radar, 1990, 12(4): 1-10.
[79] Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays [J]. Applied Optics, 1996, 35(26): 5293-5300.
[80] Yi X, Li L, Huang T X H, et al. Programmable multiple true-time-delay elements based on a Fourier-domain optical processor[J]. Optics Letters, 2012, 37(4): 608-610.
[81] Aryanfar I, Marpaung D, Choudhary A, et al. Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay[J]. Optics Letters, 2017, 42(7): 1313-1316.
[82] Zhuang L, Marpaung D, Burla M, et al. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing[J]. Optics Express, 2011, 19(23): 23162-23170.
[83] Song Y, Li S, Zheng X, et al. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing[J]. Optics Letters, 2013, 38(17): 3245-3248.
[84] Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beamforming[J]. Optics Express, 2015, 23(8): 10002-10008.
[85] Subbaraman H, Chen M Y, Chen R T. Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna[J]. Journal of Lightwave Technology, 2008, 26(15): 2803-2809.
[86] Ye X, Zhang F, Pan S. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements[J]. Optics Letters, 2016, 41(17): 3956-3959.
[87] Ye X, Zhang B, Zhang Y, et al. Performance evaluation of optical beamforming- based wideband antenna array[J]. Chinese Optics Letters, 2017, 15(1): 010013.
[88] Fard A M, Gupta S, Jalali B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging[J]. Laser & Photonics Reviews, 2013, 7(2): 207-263.
[89] Ye X, Zhang F, Pan S. Photonic time-stretched analog-to-digital converter with suppression of dispersion-induced power fading based on polarization modulation[C]//IEEE Photonics Conference (IPC). Piscataway, NJ: IEEE, 2014: 218-219.
[90] Johnstone A, Lewis M F, Hares J D, et al. High-speed optp-electronic transient waveform digitiser[J]. Computer Standards & Interfaces, 2001, 23(2): 73-84.
[91] Zhang X, Kang Z, Yuan J, et al. Scheme for multicast parametric synchronous optical sampling[J]. Optical Engineering, 2014, 53(5): 056102-056102.
[92] Zhu X, Zhu D, Pan S L. A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring[C]. International Topical Meeting on Microwave Photonics (MWP 2017), Beijing, China, October 23-26, 2017.
[93] Khilo A, Spector S J, Grein M E, et al. Photonic ADC: Overcoming the bottleneck of electronic jitter[J]. Optics Express, 2012, 20(4): 4454-4469.
[94] Taylor H F. An electrooptic analog-to-digital converter[J]. Proceedings of the IEEE, 1975, 63(10): 1524-1525.
[95] Wu Q, Zhang H, Peng Y, et al. 40 GS/s optical analog-to-digital conversion system and its improvement[J]. Optics Express, 2009, 17(11): 9252-9257.
[96] Wang Y, Zhang H M, Wu Q W, et al. Improvement of photonic ADC based on phase-shifted optical quantization by using additional modulators[J]. IEEE Photonics Technology Letters, 2012, 24(7): 566-568.
[97] Konishi T, Tanimura K, Asano K, et al. All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique[J]. Optical Society of America Journal B, 2002, 19(11): 2817-2823.
[98] Nagashima T, Hasegawa M, Konishi T. 40 G sample/s all-optical analog to digital conversion with resolution degradation prevention[J]. IEEE Photonics Technology Letters, 2017, 29(1): 74-77.
[99] Takahashi K, Matsui H, Nagashima T, et al. Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion[J]. Optics Letters, 2013, 38 (22): 4864-4867.

作者:潘时龙,张亚梅。南京航空航天大学电子信息工程学院,雷达成像与微波光子技术教育部重点实验室


互联网
仪器推荐
文章推荐