分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

超快非线性光学技术之八:多芯光纤中的超连续产生-2

2020.10.19
头像

王辉

致力于为分析测试行业奉献终身

图5 中等耦合内芯激发脉冲演化图

若以光谱的加权标准差作为超连续产生光谱宽度的度量,则不同功率和芯距下内芯激发的光谱宽度如图6所示。

图6 内芯激发光谱宽度随功率和芯距的变化

与以上结果对比,作者还讨论了当初始脉冲(脉冲宽度为100fs,功率15kW,中心波长1.55μm)输入到外芯(也就是图2(a)中的2号芯)时的情况。作者发现,在三种耦合强度下,超连续谱的谱宽的整体规律与内芯激发一致,如图7所示,仅在弱耦合情况和强耦合情况有些许区别。

图7 外芯激发光谱宽度随功率和芯距的变化

在强耦合情况(激发芯2,芯距12μm)下,脉冲激发的模式有5个,能量被分散在5个群速度差异大,不会相互作用的模式里,整体的非线性强度减弱,故让光谱宽度小于内纤芯激发的情况。而对于弱耦合情况,由于外芯相邻的纤芯只有3个,少于内纤芯的6个。因此拉曼孤子自频移后期所出现的能量泄露相较内纤芯激发的情况要更小,故光谱宽度更大。

综上所述,利用多芯光纤的非线性效应可以产生超连续谱,光谱宽度由孤子拉曼红移和色散波产生主导,纤芯间的耦合可以产生孤子超模转换、芯间色散波产生、芯间四波混频等独特的非线性现象,从而影响超连续产生的光谱。纤芯之间的距离决定芯间耦合的强弱,芯距越小,耦合越强。强耦合区超连续产生的光谱随功率线性增加,弱耦合区近似于单模光纤,中等耦合区受孤子超模转换影响,光谱宽度随芯距波动,在特定芯距处存在极大值。

参考文献:

[1] Antikainen, G. P. Agrawal. Supercontinuum generation in seven-core fibers. Journal of the Optical Society of America B. 36(11):2927~2937.


互联网
文章推荐