分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

人源抗体基因小鼠研发及其在治疗疾病中的应用(二)

2021.3.01
头像

王辉

致力于为分析测试行业奉献终身

在人源化抗体研发技术成功的基础上,90年代早期开始应用噬菌体展示技术研制全人源抗体。该技术是建立在构建重组肽和蛋白平台,实现体外展示技术的基础上。利用噬菌体包壳蛋白与外源多样性组合抗体基因融合在一起,构建所需的抗体组合表达库,而这些与噬菌体外壳蛋白融合的人源抗体基因,可共同展现于噬菌体表面,再借助特异性抗原结合筛选方法,即可获得与抗原特异结合的噬菌体抗体。应用该技术平台首先研发的人源抗体主要为抗体片断(比如scFv和Fab)。在研制全人源抗体中,噬菌体展示技术的重要贡献在于,该技术不依赖体内免疫反应,通过体外抗体筛选方法,直接获得结合不同抗原(比如自身抗原、毒素、不稳定和非免疫原性抗原等),且可供亲和力成熟改造的候选人源抗体。

 

90年代初,研究者们也成功建立了另外一个全人源抗体研发技术平台,即建立人源抗体基因小鼠模型,该技术是将人源抗体基因组导入或替换小鼠抗体相应基因组,使小鼠的免疫系统经抗原免疫后,可在小鼠体内合成生产全人源抗体。人源抗体基因小鼠模型平台的研制成功,无疑极大促进了人源抗体临床应用的发展。

 

与噬菌体展示技术研制全人源抗体的“先快后慢”的特点相比,虽然在起初的抗原免疫小鼠、筛选特异性抗体及制备杂交瘤细胞等阶段方面,人源抗体基因小鼠技术平台相对较慢。但一旦获得最初的抗体,由于随后的抗体优化过程是通过基因高频突变在小鼠体内自然完成,因此,该技术平台显示出其在提高抗体亲和力及有效性,以及不用担心免疫排斥等方面的明显优势。目前获批的人源抗体临床应用也证明,在抗体药物成药性的相关指标(比如抗体自我聚合、特异性结合等)评价方面,由人源抗体基因小鼠技术开发的抗体药物都表现更好。

 

三、治疗性抗体基本结构与临床疾病治疗的相互关系?

目前已获批上市的约80多种治疗性抗体中,IgG是五种抗体免疫球蛋白(Ig) 分类中(IgA、 IgD、IgG、IgM和IgE ) 最常见的治疗性抗体。IgG结构为Y形的150kDa免疫球蛋白, 由两对相同的重链和轻链,通过二硫键连接组成。Y形结构的两个臂分别构成抗体的两个抗原结合域 (Fab), 包含抗体的重链和轻链的可变区(Fv)。而抗体Y结构中重链骨干区域称之为片断结晶区(Fc), 该区域具有IgG 抗体结合细胞表面Fc受体和补体系统蛋白等作用,比如Fc伽马受体 (FcγR)、补体蛋白(C1q)、新生FcR(FcRn)。

 

IgG抗体主要通过与其相应“搭档”的相互结合作用,而发挥其主要治疗功能,比如抗原、补体、Fcγ受体和FcRn。其中抗体可变区与抗原的选择性特异结合作用,是抗体发挥其治疗功能的关键功能区。通过抗体Fc与其FcγR和补体蛋白结合,可引起Fc介导的抗体依赖细胞毒反应(ADCC)和C1q介导的补体依赖细胞毒反应(CDC),从而导致细胞破坏。而抗体Fc与其FcRn结合,则可能具有延长抗体循环半衰期的效果。

 

抗体的不同亚型能与不同的Fcγ受体相互作用,可显著影响抗体的功能活性和药物动力学。比如,IgG1被认为是治疗性抗体的最适合亚型,占目前临床上抗体的80.3%,而其他抗体亚型分别占IgG4(12.7%), IgG2(5.6%)和杂交IgG2/4(1.4%)。虽然,IgG3亚型在诱导ADCC和CDC方面最为重要,但目前仍无IgG3亚型抗体获得批准。可能与该亚型抗体在体内的半衰期较短,且抗体铰链结构较长,从而增加了生物加工过程的复杂性有关。IgG1、IgG2和IgG4抗体在血清中抗体半衰期都约为23天,而IgG3则只有2-6天。另外,IgG2抗体亚型不能结合Fcγ受体, 而IgG4却不能激活补体系列反应。

 

在获批治疗性抗体中,完整抗体约占78%, Fc融合蛋白为15%,抗体片断约(Fab和scFv)为7%。 治疗性抗体片断的研发,在保留其特异性和选择性基础上,具有其研发时间与成本方面的优势,且也有针对肿瘤靶细胞与组织浸润性较好的特点。但是,由于该类抗体缺少Fc区域,可影响其稳定性,缩短其在体内有效循环时间,从而影响其治疗的效果。

 

相对于小分子药物,大分子抗体药物的特点是靶点特异性强,其毒性也多为靶点毒性,给药方式多为两周或一个月一次的静脉或皮下注射,抗体药物通过淋巴系统吸收,多分布于血管和肠道液体循环系统,并以蛋白酶水解方式代谢和通过抗体的FcRn受体回收。

哺乳细胞表达系统是人源抗体生产的最为常见系统。该表达系统的优势在于能大量生产,且有助于抗体生产过程中的翻译后修饰,特别是对于需要糖基化的人源抗体而言。在已经批准临床应用的治疗性抗体中,有约63%是由中国仓鼠卵巢(CHO)细胞生产。其余有小鼠骨髓瘤细胞NSO(18%)和Sp2/0(11.1%),  人胚胎肾脏细胞系(HEK)293(4.2%)和大肠杆菌(4.2%)。

 

四、人源抗体基因小鼠模型建立有哪些策略与方法?目前这类人源抗体临床应用进展如何?

利用小鼠模型研制人源抗体的策略,即应用小鼠免疫系统,通过人源抗体基因在小鼠体内重组和体细胞高突变的自然发生过程,生产针对不同免疫原的多样性组合,且有特异性的人源抗体。人源抗体基因小鼠模型的建立,为治疗性抗体研发提供了可靠的技术平台。与其他人源抗体研制技术比较,基因小鼠技术平台的优势表现有,人源抗体生产不仅无需人源化及更多抗体组合多样性、且抗体体内亲和力成熟与筛选抗体克隆过程是自然优化等。当然,由于人源抗体Ig 基因覆盖基因组区域非常大,也使构建如此人源抗体基因小鼠有巨大的挑战性。

 

1985年,科学家首先提出将人源抗体基因导入小鼠生殖细胞,通过建立转基因小鼠来生产人源抗体的建议,该想法的提出开创了人源抗体生产研发的新思路。1989年,科学家们首次构建了人源抗体重链基因载体,包括人源IgM抗体重链可变区(包括VDJ)和μ链恒定区基因。将约25kb大的质粒DNA载体显微注射至小鼠受精卵,成功获得约4%小鼠B细胞表达人源抗体μ链,且能生产人源IgM抗体的转基因小鼠。1993年,科学家们将小鼠抗体重链部分(JH)和轻链(Jk)基因敲除,并与表达人源IgH和IgL抗体的转基因小鼠交配,成功获得能产生多样性组合的人源抗体转基因小鼠模型。

 

1994年,第一个人源抗体基因小鼠HuMabMouse技术平台首先研制成功。该小鼠模型是在小鼠抗体重链和轻链(IgH和IgK)基因 敲除的基础上,构建能表达人源抗体重链和轻链基因。整个人源抗体重链基因组约有1.29Mb, 轻链基因组约为1.39Mb,而起初引入的人源抗体重链基因组只有约80kb大小。由于抗体多样性组合是由其生殖细胞中V(D)J基因决定的,因此,如何增加导入人源抗体基因组容量,提高人源抗体基因组合的多样性,则是成功研制该技术平台的合理策略与需要解决的关键技术难题。

 

1993年,科学家们开始应用酵母人工染色体(YAC)载体,通过酵母同源重组的方法,分别构建人源抗体重链(~220kb) 和轻链(~300kb)载体,并借助酵母-胚胎干(ES)细胞融合方法,成功将其导入小鼠ES细胞。1997年,又将大片断人源抗体重链(~1Mb)和轻链(~700kb)的YAC导入小鼠ES细胞,并与鼠源抗体基因(可变区和恒定区)敲除小鼠交配,成功构建了表达人源抗体基因的XenoMouse小鼠模型。该基因小鼠包含了人源抗体重链可变区(VDJ)基因66个、轻链可变区(VJ)基因32个。虽然,XenoMouse和HuMabMouse小鼠模型都彻底排除了小鼠抗体基因可能对人源抗体基因的干扰影响,且也增加了人源抗体基因组合的多样性,但由于这两种小鼠抗体基因都被完全敲除,即小鼠不仅缺失抗体可变区基因,其恒定区基因也被敲除,从而降低了人源抗体生产的有效性,也影响了抗体在小鼠体内的类别转换效果和体细胞高频突变发生率。


互联网
文章推荐