分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

生物传感器的分类及应用领域

2021.10.19
头像

xujinping

致力于为分析测试行业奉献终身

  设备分类

  用 固定化生物成分或 生物体作为敏感元件的传感器称为生物传感器(biosensor)。生物传感器并不专指用 于生物技术领域的传感器,它的应用领域还包括环境监测、医疗卫生和食品检验等。生物传感器主要有下面三种分类命名方式:

  1.根据生物传感器中分子 识别元件即敏感元件可分为五类: 酶传感器(enzymesensor),微生物传感器(microbialsensor), 细胞传感器(organallsensor),组织传感器(tis-suesensor)和 免疫传感器(immunolsensor)。显而易见,所应用的敏感材料依次为酶、微生物个体、 细胞器、动植物组织、抗原和抗体。

  2.根据生物传感器的换能器即信号转换器分类有:生物电极(bioelectrode)传感器,半导体生物传感器(semiconductbiosensor),光生物传感器(opticalbiosensor),热生物传感器(calorimetricbiosensor),压电晶体生物传感器(piezoelectricbiosensor)等,换能器依次为电化学电极、半 导体、 光电转换器、 热敏电阻、压电晶体等。

  3.以被测目标与 分子识别元件的 相互作用方式进行分类有生物亲和型生物传感器(affinitybiosensor)、代谢型或催化型生物传感器。

  三种 分类方法之间实际互相交叉使用。

  应用领域

  综述

  生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。

  在国民经济的各个部门如食品、制药、 化工、临床检验、 生物医学、环境监测等方面有广泛的应用前景。特别是 分子生物学与微电子学、 光电子学、微细加工技术及纳米技术等新学科、新技术结合,正改变着 传统医学、 环境科学动植物学的面貌。生物传感器的研究开发,已成为世界科技发展的新热点,形成21世纪新兴的高技术产业的重要组成部分,具有重要的战略意义。

  食品工业

  生物传感器在食品分析中的应用包括食品成分、 食品添加剂、有害毒物及食品 鲜度等的测定分析。

  ⑴ 食品成分分析 在食品工业中,葡萄糖的含量是衡量 水果成熟度和贮藏寿命的一个重要指标。已开发的酶电极型生物传感器可用来分析 白酒、 苹果汁、 果酱和 蜂蜜中的葡萄糖。其它糖类,如果糖, 啤酒、 麦芽汁中的 麦芽糖,也有成熟的测定传感器。

  Niculescu等人研制出一种安培生物传感器,可用于检测 饮料中的 乙醇含量。这种生物传感器是将一种配蛋白醇脱氢酶埋在 聚乙烯中,酶和聚合物的比例不同可以影响该生物传感器的性能。在目前进行的实验中,该生物传感器对乙醇的测量极限为1nmol/L。

  ⑵食品添加剂的分析

  亚硫酸盐通常用作食品工业的 漂白剂和 防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型 二氧化硫酶电极可用于测定食品中的亚硫酸盐含量,测定的线性范围为0~6的负四次方mol/L。又如饮料、 布丁、醋等食品中的甜味素,Guibault等采用天冬氨酶结合氨电极测定,线性范围为2×10的负五次方~1×10的负三次方 mol/L。此外,也有用生物传感器测定色素和乳化剂的报道。

  ⑶ 农药残留量分析

  人们对食品中的农药残留问题越来越重视,各国政府也不断加强对食品中的农药残留的检测工作。

  Yamazaki等人发明了一种使用人造酶测定 有机磷杀虫剂的电流式生物传感器,利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测定极限为10的负七次方mol,在40℃下测定只要4min。Albareda等用 戊二醛交联法将乙酞胆碱醋酶固定在铜丝 碳糊电极表面,制成一种可检测浓度为10的负十次方mol/L的对氧磷和10的负十一次方mol/L的克百威的生物传感器,可用于直接检测自来水和果汁样品中两种农药的残留。

  ⑷微生物和毒素的检验

  食品中 病原性微生物的存在会给消费者的健康带来极大的危害,食品中毒素不仅种类很多而且毒性大,大多有致癌、致畸、致突变作用,因此,加强对食品中的病原性微生物及毒素的检测至关重要。

  食用 牛肉很容易被 大肠杆菌0157.H7.所感染,因此,需要快速灵敏的方法检测和防御大肠杆菌0157.H7一类的细菌。Kramerr等人研究的 光纤生物传感器可以在几分钟内检测出食物中的 病原体(如大肠杆菌0157.H7.),而传统的方法则需要几天。这种生物传感器从检测出病原体到从样品中重新获得病原体并使它在培养基上独立生长总共只需1天时间,而传统方法需要4天。

  还有一种快速灵敏的免疫生物传感器可以用于测量牛奶中双氢除虫菌素的残余物,它是基于 细胞质基因组的反应,通过 光学系统传输信号。已达到的检测极限为16.2ng/mL。一天可以检测20个牛奶样品。

  ⑸食品鲜度的检测

  食品工业中对食品鲜度尤其是鱼类、肉类的鲜度检测是评价食品质量的一个主要指标。Volpe等人以黄嗦吟氧化酶为生物敏感材料,结合过氧化氢电极,通过测定鱼降解过程中产生的一磷酸肌苷(IMP)、肌苷(HXR)和次黄嘌吟(HX)的浓度,从而评价鱼的鲜度,其线性范围为5x10的负10次方~2x10的负4次方mol/L。

  环境监测

  环境污染问题日益严重,人们迫切希望拥有一种能对 污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。已有相当部分的生物传感器应用于环境监测中。

  ⑴水环境监测

  生化需氧量(BOD)是一种广泛采用的表征有机污染程度的综合性指标。在 水体监测和污水处理厂的运行控制中,生化需氧量也是最常用、最重要的指标之一。常规的BOD测定需要5d的培养期,而且操作复杂,重复性差,耗时耗力,干扰性大,不适合现场监测。SiyaWakin等人利用一种毛孢子菌(Trichosporoncutaneum)和 芽孢杆菌(Bacilluslicheniformis)制作一种 微生物BOD传感器。该BOD生物传感器能同时精确测量 葡萄糖和 谷氨酸的浓度。测量范围为0.5~40mg/L,灵敏度为5.84nA/mgL。该生物传感器稳定性好,在58次实验中, 标准偏差仅为0.0362。所需反应时间为5~lOmin。

  硝酸根离子是主要的水污染物之一,如果添加到食品中,对人体的健康极其有害。Zatsll等人提出了一种整体化酶功能场效应管装置检测硝酸根离子的方法。该装置对硝酸根离子的检测极限为7x10的负5次方mol, 响应时间不到50s,系统操作时间约为85s。

  此外,Han等人发明了一种新型微生物传感器,可用于测定三氯乙烯。该传感器将假单细胞菌JI104固定在聚四氟乙烯薄膜(直径:25 mm,孔径:0.45μm)上。再将薄膜固定在氯离子电极上。带有AgCl/Ag2S薄膜(7024L,DKK,日本)的氯离子电极和Ag/AgCI参比电极连接到离子计(IOL-50,DKK,日本)上,记录电压的变化,与标准曲线对照,测出三氯乙烯的浓度。该传感器线性浓度范围为0.1~ 4 mg/L,适于检测工业废水。在最优化条件下,其响应时间不到10min。

  ⑵ 大气环境监测

  二氧化硫(S02)是 酸雨 酸雾形成的主要原因,传统的检测方法很复杂。Martyr等人将 亚细胞类脂类(含亚硫酸盐氧化酶的肝微粒体)固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,对S02形成的 酸雨 酸雾 样品溶液进行检测,lOmin可以得到稳定的测试结果。

  NOx不仅是造成 酸雨酸雾的原因之一,同时也是 光化学烟雾的罪魁祸首。Charles等人用多孔渗透膜、固定 化硝化细菌和氧电极组成的微生物传感器来测定样品中亚硝酸盐含量,从而推知空气中NOx的浓度。其检测极限为0.01xl0负6次方mo1/L。

  发酵工业

  在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、可能消除发酵过程中 干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。

  ⑴原材料及代谢产物的测定

  微生物传感器可用于测量发酵工业中的原材料(如 糖蜜、 乙酸等)和代谢产物(如头孢霉素、 谷氨酸、 甲酸、醇类、 乳酸等)。测量的装置基本上都是由适合的微生物 电极与氧电极组成,原理是利用微生物的 同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。

  2002年,Tkac等人将一种以铁氰化物为媒介的葡萄糖氧化酶细胞生物传感器用于测量发酵工业中的乙醇含量,13s内可以完成测量,测量灵敏度为3.5nA/mM。该微生物传感器的检测极限为0.85nM,测量范围为2~270nM,稳定性能很好。在连续8.5h的检测中,灵敏度没有任何降低。

  ⑵微生物细胞数目的测定

  发酵液中细胞数的测定是重要的。细胞数( 菌体浓度)即单位发酵液中的细胞数量。一般情况下,需取一定的发酵液样品,采用显微计数方法测定,这种测定方法耗时较多,不适于连续测定。在发酵控制方面迫切需要直接测定细胞数目的简单而连续的方法。人们发现:在 阳极(Pt)表面上,菌体可以直接被氧化并产生电流。这种电化学系统可以应用于细胞数目的测定。测定结果与常规的细胞计数法测定的数值相近。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。

  医学

  医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广的应用前景。

  ⑴临床医学[1]

  在临床医学中, 酶电极是最早研制且应用最多的一种传感器,已成功地应用于血糖、乳酸、维生素C、尿酸、 尿素、谷氨酸、 转氨酶等物质的检测。其原理是:用 固定化技术将酶装在 生物敏感膜上,检测样品中若含有相应的酶底物,则可反应产生可接受的信息物质, 指示电极发生响应可转换成电信号的变化,根据这一变化,就可测定某种物质的有无和多少。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,在临床中应用的微生物传感器有葡萄糖、乙酸、胆固醇等传感器。若选择适宜的含某种酶较多的组织,来代替相应的酶制成的传感器称为生物电极传感器。如用猪肾、兔肝、牛肝、甜菜、南瓜和黄瓜叶制成的传感器,可分别用于检测谷酰胺、 鸟嘌呤、 过氧化氢、 酪氨酸、 维生素C和 胱氨酸等。

  DNA传感器是目前生物传感器中报道最多的一种,用于临床疾病诊断是DNA传感器的最大优势,它可以帮助医生从DNA,RNA、蛋白质及其相互作用层次上了解疾病的发生、发展过程,有助于对疾病的及时诊断和治疗。此外,进行药物检测也是DNA传感器的一大亮点。Brabec等人利用DNA传感器研究了常用铂类抗癌药物的作用机理并测定了血液中该类药物的浓度。

  ⑵军事医学

  军事医学中,对 生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素,如 炭疽芽孢杆菌、 鼠疫耶尔森菌、埃博拉出血热病毒、肉毒杆菌类毒素等。

  2000年,美军报道已研制出可检测葡萄球菌肠毒素B、蓖麻素、土拉弗氏菌和肉毒杆菌等4种 生物战剂的免疫传感器。检测时间为3~lOmin,灵敏度分别为10,5Omg/L,5x10的5次方,和5x10的4次方cfu/ml。Song等人制成了检测霍乱病毒的生物传感器。该生物传感器能在30min内检测出低于1xlO的负5次方mol/L的霍乱毒素,而且有较高的敏感性和选择性,操作简单。该方法能够用于具有多个信号 识别位点的蛋白质 毒素和病原体的检测。

  此外,在法医学中,生物传感器可用作DNA鉴定和亲子认证等。

网络
仪器推荐
文章推荐