分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

电泳仪的故障及研发背景

2021.10.31
头像

xujinping

致力于为分析测试行业奉献终身

  电泳仪的故障

  一、电泳仪的输出达不到设定值

  电泳仪的输出值状态遵“循欧姆定律”:电压U=电流I×(电泳槽)电阻R

  电阻R相对不变的情况下,U、I、P(功率P=电流I×电压U)中任意1个参数恒定,其他参数也随之恒定;而任意1个参数变化,其他参数也随之正比变化。

  如果电泳仪的输出电压U达不到预置值,应首先观察I或P是否已经恒定,或者已经达到电泳仪所规定的最大I或P(JY电泳仪均有明确指示灯标志)。如果尚未达到极限值,将已经恒定I或P的设置调大(有必要的话至极限值),才能够提高电压输出。

  如果电泳仪的电流I达不到预置值,可调整电压U或功率P。如果电泳仪的功率P达不到预置值,可调整电压U或电流I。

  二、电脑控制电泳仪过压报警

  (1)检查是否空载使用。

  (2)是否电泳槽未加缓冲液。

  (3)是否电泳槽铂金丝断。

  三、过流保护

  (1)是否存在电泳槽短路现象。

  (2)缓冲液是否选错。

  四、漏电保护

  (1)是否有液体溅入仪器内部或输出接口上。

  (2)是否有很多灰尘落入仪器内部。

  研发背景

  1937年,瑞典生化学家Tiselius集前人百余年探索电泳现象之大成,发明了Tiselius电泳仪,在此基础上建立了研究蛋白质的自由界面电泳方法,利用该法首次证明人血清是由白蛋白(A)、α、β、γ球蛋白组成,并因此于1948年获得阿果奖。随后电泳技术的发展突飞猛进,1949年,RicketlsMarrack等人证明人血清蛋白质经电泳分离可依次分为白蛋白,α1、α2、β、γ球蛋白五个组分,1957年Reiner对人血清五个组分蛋白进行了定量分析。

  但自由界面电泳没有固定支持介质,扩散和对流作用较强,影响分离效果,于是在50年代相继出现了固相支持介质电泳。最初的支持介质是滤纸和醋酸纤维素膜,目前这些介质在实验室已经应用较少。在很长一段时间里,小分子物质如氨基酸、多肽、糖等通常用滤纸、纤维素或硅胶薄层平板作为介质进行电泳分离、分析,但目前一般使用灵敏度更高的技术如高效液相色谱法(HPLC)等来进行分析。而对于复杂的生物大分子,以滤纸、硅胶或醋酸纤维素膜等作为支持介质进行电泳,其分离效果并不理想。于是1959年,Raymond和Weintraub,Davis和Ornstein先后利用人工合成凝胶作支持介质建立了聚丙烯酰胺凝胶电泳,从而大大提高了电泳的分辨率和分离效果,增强了电泳技术的发展、渗透及与其他技术结合配套的能力。致使各式各样的电泳技术和电泳材料如雨后春笋、竞相争荣,成为当代实验科学技术中品种繁多、应用广泛、基础与尖端技术皆备的大技术。

  根据电泳中是否使用支持介质分为自由电泳和区带电泳。

  自由电泳不使用支持介质,电泳在溶液中进行。这类电泳又分为非自由界面电泳和自由界面电泳两类。非自由界面电泳指悬浮在溶液中的带电粒子(如各种细胞)通电后全部移动,不出现界面,如显微电泳等。自由界面电泳中被分离物质集中在某一层,形成各自的界面而进行定性或定量分析。自由界面电泳需要昂贵精密的电流仪器,仅在少数特殊电泳如等电聚焦电泳和等速电泳中使用。

  区带电泳都使用支持介质,根据支持介质不同分为滤纸电泳、醋纤膜电泳、薄层电泳和凝胶电泳等。此外,根据支持介质的装置形式不同又可分为水平板式电泳、垂直板式电泳、垂直盘状电泳、毛细管电脉、桥形电泳和连续流动电泳等。

网络
文章推荐