分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

Quantitating RNA

2019.4.21
头像

zhaochenxu

致力于为分析测试行业奉献终身

RNA quantitation is an important and necessary step prior to most RNA analysis methods. Here we discuss three common methods used to quantitate RNA and tips for optimizing each of these methods.

UV Spectroscopy 
The traditional method for assessing RNA concentration and purity is UV spectroscopy. The absorbance of a diluted RNA sample is measured at 260 and 280 nm. The nucleic acid concentration is calculated using the Beer-Lambert law, which predicts a linear change in absorbance with concentration (Figure 1).

f00478.gif

Figure 1. Beer-Lambert Law for Calculating UV Absorbance by Nucleic Acid.
BLANK/DILUENTA260/A280RATIODEPC-treated water (pH 5-6)1.60Nuclease-free water (pH 6-7)1.85TE (pH 8.0)2.14
Figure 2. Effects of pH on A260/A280Ratio.

Using this equation, an A260 reading of 1.0 is equivalent to ~40 µg/ml single-stranded RNA.The A260/A280 ratio is used to assess RNA purity. An A260/A280 ratio of 1.8­2.1 is indicative of highly purified RNA.

UV spectroscopy is the most widely used method to quantitate RNA. It is simple to perform, and UV spectrophotometers are available in most laboratories. The method does have several drawbacks, but they can be minimized by following these tips:

Tips for Optimizing Performance

Because an A260 of 0.1 corresponds to ~4 µg/ml RNA, it is often impractical to use UV spectroscopy to quantitate RNA isolated from small samples that will have lower concentrations once diluted. Fortunately, there are alternative methods for accurately quantitating small amounts of RNA ­ two are described below.

Fluorescent Dyes 
Certain fluorescent dyes, such as RiboGreen® (Molecular Probes), exhibit a large fluorescence enhancement when bound to nucleic acids. As little as 1 ng/ml of RNA can be detected and quantitated using RiboGreen with a standard fluorometer, fluorescence microplate reader, or filter fluorometer.

To accurately quantitate RNA, unknowns are plotted against a standard curve produced with a sample of known concentration, usually based on its absorbance at 260 nm. The linear range of quantitation with RiboGreen can extend three orders of magnitude (1 ng/ml to 1 µg/ml) when two different dye concentrations are used. Furthermore RiboGreen® assays are relatively insensitive to non-nucleic acid contaminants commonly found in nucleic acid preparations, so that linearity is maintained.

Tips for Optimizing Performance

Agilent 2100 Bioanalyzer 
The Agilent 2100 bioanalyzer uses a combination of microfluidics, capillary electrophoresis, and fluorescent dye that binds to nucleic acid to evaluate both RNA concentration and integrity. An RNA reference standard (the RNA 6000 Ladder Cat# 7152; Ambion) and a microfluidics chip (The RNA Lab Chip; Agilent Technologies) are also required. The RNA 6000 Ladder is composed of six RNAs ranging in size from 0.2­6 kb. The ladder and samples are loaded in designated wells on the RNA Lab Chip. Size and mass information is provided by the fluorescence of RNA molecules as they move through the channels of the chip. The instrument software automatically compares the peak areas from unknown RNA samples to the combined area of the six RNA 6000 Ladder RNA peaks to determine the concentration of the unknown samples. The RNA 6000 Nano System has a broad dynamic range and can quantitate between 25­500 ng/ml of RNA with a covariance of ~10%.

Perhaps the most powerful feature of the Agilent 2100 bioanalyzer is its ability to provide information about RNA integrity. As each RNA sample is analyzed, the software generates both a gel-like image and an electropherogram (Figure 3). When analyzing total RNA, the areas under the 18S and 28S ribosomal RNA peaks are used to calculate the ratio of these two major ribosomal RNA species and these data are displayed along with quantitation data on individual electropherograms (Figure 3a). Significant changes in the ratios of the 18S and 28S ribosomal RNA peaks are indicative of degraded RNA.

f00479.gif 

Figure 3. Agilent 2100 Bioanalyzer Electropherograms of RNA Samples. A. Electropherogram of a Total RNA Sample. Total RNA (100 ng) was analyzed on an Agilent 2100 bioanalyzer. The resulting electropherogram shows the characteristic signature of a high quality total RNA sample. B. Electropherogram of Amplified aRNA Sample. Total RNA 2 µg corresponding to 60 ng mRNA) was amplified using the MessageAmp aRNA Kit (Ambion Cat# 1750) resulting in (90 µg aRNA, a 1500 fold amplification. The aRNA (900 ng) was analyzed on an Agilent 2100 bioanalyzer. The resulting electropherogram shows the classic output of a high quality aRNA sample.

In addition to its usefulness for analysis of total RNA, the bioanalyzer is also a superior tool for analyzing mRNA and amplified aRNA (antisense RNA) integrity. Intact mRNA and aRNA profiles consist of a broad distribution of signal, with the bulk of the RNA usually falling between 1 and 2 kb, though this will vary from tissue to tissue (Figure 3b). A significant shift of the profile towards lower molecular weights is indicative of poor RNA integrity.

Tips for Optimizing Performance


生物在线
仪器推荐
文章推荐