分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

基因操作的工具酶-1

2020.9.14
头像

王辉

致力于为分析测试行业奉献终身

一、 限制性核酸内切酶及其应用

(一)限制性核酸内切酶的发现

当λ(k)噬菌体侵染E.coliB时,由于其DNA中有EcoB核酸酶特异识别的碱基序列,被降解掉。而E.coliB的DNA中虽然也存在这种特异序列,但可在EcoB甲基化酶的作用下,催化S-腺苷甲硫氨酸(SAM)将甲基转移给限制酶识别序列的特定碱基,使之甲基化。 Eco核酸酶不能识别已甲基化的序列。B

最早分离出的限制内切酶是在1968年,Meselson和Yuan,大肠杆菌B和K菌株,EcoB和EcoK, 是I型的,没有实用价值。



首个II型限制内切酶是在1970年,由H.O.Smith等从Heamophilus influenzae的Rd菌株中Hind II 。使得DNA分子的体外精确切割成为可能。

从此,相关研究展开。如NEB公司的提取和克隆。目前已纯化出3000种限制性内切酶中,其中有30%是在NEB发现的 。

限制性核酸内切酶(restriction endonuclease ):是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。切开的是3,5-磷酸二酯键。

(二)限制性核酸内切酶的分类

分为I型、II型和III型。

(三)限制性核酸内切酶的命名

1、寄主菌属名的第一个字母和种名的头两个字母组成3个斜体

字母的略语表示酶来源的菌种名称,如大肠杆菌Escherichia coli 表示为Eco , 流感嗜血菌Haemophilus influenzae 表示为Hin;

2、用一个正体字母表示菌株的类型,比如EcoR、Hind;

3、如果一种特殊的寄主菌株具有几个不同的限制修饰体系,则用罗马数字标出,比如Eco R I、 Hin。d III

(四) II型限制性核酸内切酶的基本特性

1、识别位点的特异性

每种酶都有其特定的DNA识别位点,通常是由4~8个核苷酸组成的特定序列(靶序列)。

2、识别序列的对称性

靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构。

3、切割位点的规范性

交错切或对称切(可形成粘性末端或平末端的DNA分子)。
与II型核酸内切酶有关的几个概念

粘性末端:cohesive ends是指DNA分子在限制酶的作用之下形成的具有互补碱基的单链延伸末端结构,它们能够通过互补碱基间的配对而重新环化起来。

平 末 端 :Blunt end在识别序列对称处同时切开DNA分子两条链,产生的平齐末端结构。则不易于重新环化。



同裂酶:isoschizomers 能识别和切割同样的核苷酸靶序列的不同来源的内切酶。不同同裂酶对位点的甲基化敏感性有差别。

同尾酶:isocaudamers 识别的靶序列不同,但能产生相同粘性末端的一类限制性核酸内切酶。如BamH I 、BclI、BglII和Xho I 是一组同尾酶。

注意: 由同尾酶产生的粘性末端序列很容易重新连接,但是两种同尾酶消化产生的粘性末端重新连接形成的新片段将不能被该两种酶的任一种所识别。

(五)限制性核酸内切酶的消化反应

一个限制酶单位(U)指:在理想的反应条件(适宜的缓冲液和反应温度,通常为37℃)下,1h内中完全降解1 mg l DNA所需要的酶量。

影响酶活性的因素很多,最重要的有:

⑴ DNA的纯度

⑵  DNA的甲基化程度

⑶ 酶切反应的温度(通常为37℃ )

⑷ DNA的分子结构

⑸  核酸内切限制酶的缓冲液

在“非最适的”反应条件下,有些核酸内切限制酶识别序列的特异性便会发生“松动”,从其“正确”识别序列以外的其它位点切割DNA分子,这种现象叫星号活性。用*表示。

二、 DNA连接酶及其应用

(一)DNA连接酶的发现

环形DNA分子的发现使科学家相信一定有一种能连接这种切口的酶存在。

首个DNA连接酶(ligase)——大肠杆菌DNA连接酶,是1967年发现的,是大肠杆菌基因编码。

1970年,发现了T4DNA连接酶,由大肠杆菌T4噬菌体基因编码的。

(二) DNA连接酶作用特点

1. 连接的两条链必须分别具有自由3’-OH和5’-P,而且这两个基团彼此相邻;

2. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程。

E.coli DNA连接酶 -连接具互补碱基黏性末端(最初研究表明),现在研究可连接平末端;需NAD+辅助因子,活性低,不常用。

T 4DNA连接酶-连接具互补碱基黏性末端和平末端,需ATP辅助因子,活性高,常用。


互联网
仪器推荐
文章推荐