75.100 (Lubricants, industrial oils and related pr 标准查询与下载



共找到 802 条与 相关的标准,共 54

Some oils are formulated with organo-metallic additives which act as detergents, antioxidants, antiwear agents, and so forth. Some of these additives contain one or more of these elements: barium, calcium, phosphorus, sulfur, and zinc. These test methods provide a means of determining the concentration of these elements which in turn provides an indication of the additive content of these oils.1.1 These test methods cover the determination of barium, calcium, phosphorus, sulfur, and zinc in unused lubricating oils at element concentration ranges shown in Table 1. The range can be extended to higher concentrations by dilution of sample specimens. Additives can also be determined after dilution. Two different methods are presented in these test methods. 1.2 Test Method A (Internal Standard Procedure)8212;Internal standards are used to compensate for interelement effects of X-ray excitation and fluorescence (see Sections 8 through 13). 1.3 Test Method B (Mathematical Correction Procedure)8212;The measured X-ray fluorescence intensity for a given element is mathematically corrected for potential interference from other elements present in the sample (see Sections 14 through 19). 1.4 The preferred concentration units are mass % barium, calcium, phosphorus, sulfur, or zinc. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Methods for Elemental Analysis of Lubricant and Additive Components8212;Barium, Calcium, Phosphorus, Sulfur, and Zinc by Wavelength-Dispersive X-Ray Fluorescence Spectroscopy

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2010
实施

The compatibility of greases can be important for users of grease-lubricated equipment. It is well known that the mixing of two greases can produce a substance markedly inferior to either of its constituent materials. One or more of the following can occur. A mixture of incompatible greases most often softens, sometimes excessively. Occasionally, it can harden. In extreme cases, the thickener and liquid lubricant will completely separate. Bleeding can be so severe that the mixed grease will run out of an operating bearing. Excessive syneresis can occur, forming pools of liquid lubricant separated from the grease. Dropping points can be reduced to the extent that grease or separated oil runs out of bearings at elevated operating temperatures. Such events can lead to catastrophic lubrication failures. Because of such occurrences, equipment manufacturers recommend completely cleaning the grease from equipment before installing a different grease. Service recommendations for grease-lubricated equipment frequently specify the caveat–do not mix greases under any circumstances. Despite this admonition, grease mixing will occur and, at times, cannot be avoided. In such instances, it would be useful to know whether the mixing of two greases could lead to inadequate lubrication with disastrous consequences. Equipment users most often do not have the resources to evaluate grease compatibility and must rely on their suppliers. Mixing of greases is a highly imprudent practice. Grease and equipment manufacturers alike recognize such practices will occur despite all warnings to the contrary. Thus, both users and suppliers have a need to know the compatibility characteristics of the greases in question. There are two approaches to evaluating the compatibility of grease mixtures. One is to determine whether such mixtures meet the same specification requirements as the constituent components. This approach is not addressed by this practice. Instead, this practice takes a specification-independent approach; it describes the evaluation of compatibility on a relative basis using specific test methods. Three test methods are used because fewer are not sufficiently definitive. For example, in one study, using 100 000-stroke worked penetration for evaluation, 62 % of the mixtures were judged to be compatible. In a high-temperature storage stability study, covering a broader spectrum of grease types, only one-third of the mixtures were compatible. These studies used different criteria to judge compatibility. Compatibility cannot be predicted with certainty from foreknowledge of grease composition. Generally, greases having the same or similar thickener types will be compatible. Uncommonly, even greases of the same type, although normally compatible when mixed, can be incompatible because of incompatible additive treatments. Thus, compatibility needs to be judged on a case-by-case basis. Two constituent greases are blended in specific ratios. A 50:50 mixture simulates a ratio that might be experienced when one grease (Grease A) is installed in a bearing containing a previously installed, different grease (Grease B), and no attempt is made to flush out Grease B with Grease A. The 10:90 and 90:10 ratios are intended to simulate ratios that might occur when attempts are made to flush out Grease B with Grease A. Note 18212;Some companies evaluate 25:75 and 75:25 ratio mixtures instead of 10:90 and 90:10 ratio mixtures. But, the latter two ratios, which are prescribed by this practice, are considered more representative of the flushing practice described in 5.3. Incompatibility is most often revealed by the evaluation of 50:50 mixtures. However, in some instances 50:50 mixtures are compatible and more dilute ratios are incompatib........

Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2010
实施

Final drive axles are often subjected to severe service where they encounter high speed shock load conditions, characterized by sudden accelerations and decelerations. This severe service can lead to scoring distress on the ring gear and pinion surface. This test method measures anti-scoring properties of final drive lubricants. This test method is used or referred to in the following documents: American Petroleum Institute (API) Publication 1560. SAE J308 and SAE J2360.1.1 This test method covers the determination of the anti-scoring properties of final drive axle lubricating oils when subjected to high-speed and shock conditions. This test method is commonly referred to as the L-42 test. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions8212;SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, National Pipe Threads/diameters, tubing size, and single source equipment suppliers. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 4 and 7.

Standard Test Method for Evaluation of the Load Carrying Properties of Lubricants Used for Final Drive Axles, Under Conditions of High Speed and Shock Loading

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2010
实施

Crude oil, petroleum, petroleum products, additives, biofuels, and lubricants are routinely analyzed for their elemental content such as chlorine, nitrogen, hydrogen, phosphorus, sulfur, and various metals using a variety of analytical techniques. Some of these methods require little to no method calibration; some others require only simple one step calibration; while others require elaborate calibration routine before the product is analyzed for its elemental content. Fairly often it can be shown that the round robin results by a co-operator are all biased with respect to those from other laboratories. Presumably, the failure to follow good laboratory practices and instructions in the test methods can be a causal factor of such errors. A further consequence is an unnecessarily large reproducibility estimate or the data being dropped from the study as an outlier. Another cause of such discrepancies could be different or inadequate calibration practice used in the laboratory. Most test methods spell out the calibration requirements but often do not quote the frequency required letting the laboratories use good laboratory practices for this task. Thus, uniform practice for instrument calibration would be beneficial in standardizing the test procedures and obtaining consistent results across the laboratories. Committee D02 has already issued standard practices for uniform sample preparation (D7455), standard operating procedures for ICP-AES (D7260) and XRF (D7343) as well as standard quality assurance protocol (D6792). This guide should be considered as a continuing effort on behalf of this subcommittee to achieve standardized practices in all parts of an analytical sequence.1.1 This guide covers different ways by which the test methods used for elemental analysis of petroleum product and lubricant samples are calibrated before the sample analysis. 1.2 Uniform practice for test method calibration is beneficial in standardizing the procedures, and obtaining consistent results across different laboratories. 1.3 This guide includes only the basic steps for generally encountered instrument types. Anything out of the ordinary may require special procedures. See individual test methods for instructions to handle such situations. 1.4 This guide is not a substitute for a thorough understanding of the actual test method to be used, caveats it contains, and additional instrument preparation that may be required. 1.5 The user should not expand the scope of the test methods to materials or concentrations outside the scope of the test methods being used. 1.6 This guide should also be applicable to sample preparation of non-petroleum based bio-fuels for elemental analysis. Work is underway on these aspects in Subcommittee D02.03. As more information becomes available, it will be added to this standard. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Guide for Calibration Requirements for Elemental Analysis of Petroleum Products and Lubricants

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2010
实施

During engine operation, engine oil can become contaminated by water and fuel. In the case of Ed85 fuels, this contamination can result in a non-emulsified aqueous bottom layer in the oil that can affect the lubrication and detergency of the engine oil. To avoid field problems, engine oil should be capable of emulsifying water contamination to the extent that no aqueous layer appears. The test described in this method is designed to evaluate the ability of an engine oil, contaminated with a specified amount of water (volume fraction of 10 % of the original oil sample) and simulated Ed85 fuel (also a volume fraction of 10 % of the original oil sample), to emulsify the water after agitation in a blender and to maintain this emulsion at temperatures of 20 °C to 25 °C and -5 °C to 0 °C for at least 24 h. This test method has potential use in specifications of engine lubricating oils, such as Specification D4485.1.1 This test method describes a qualitative procedure to measure the ability of a specific volume of engine oil to emulsify a specific added volume of combined water and simulated Ed85 fuel upon agitation in a high-speed blender and to retain this emulsified state for at least 24 h at temperatures of both 20 °C to 25 °C and -5 °C to 0 °C. 1.2 Information Letters are published periodically by the ASTM Test Monitoring Center (TMC) to update this and other test methods under the jurisdiction of Subcommittee D02.B0. Copies of these letters can be obtained by writing the Center. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Evaluation of the Ability of Engine Oil to Emulsify Water and Simulated Ed85 Fuel

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2010
实施

The CCS apparent viscosity of automotive engine oils correlates with low temperature engine cranking. CCS apparent viscosity is not suitable for predicting low temperature flow to the engine oil pump and oil distribution system. Engine cranking data were measured by the Coordinating Research Council (CRC) L-49 test with reference oils that had viscosities between 600 and 8400 mPa·s (cP) at –17.8°C and between 2000 and 20 000 mPa·s (cP) at –28.9°C. The detailed relationship between this engine cranking data and CCS apparent viscosities is in Appendixes X1 and X2 of the 1967 T edition of Test Method and CRC Report 409. Because the CRC L-49 test is much less precise and standardized than the CCS procedures, CCS apparent viscosity need not accurately predict the engine cranking behavior of an oil in a specific engine. However, the correlation of CCS apparent viscosity with average CRC L-49 engine cranking results is satisfactory. The correlation between CCS and apparent viscosity and engine cranking was confirmed at temperatures between –1 and –40°C by work on 17 commercial engine oils (SAE grades 5W, 10W, 15W, and 20W). Both synthetic and mineral oil based products were evaluated. See ASTM STP 621. A correlation was established in a low temperature engine performance study between light duty engine startability and CCS measured apparent viscosity. This study used ten 1990s engines at temperatures ranging from –5 down to –40°C with six commercial engine oils (SAE 0W, 5W, 10W, 15W, 20W, and 25W). The measurement of the cranking viscosity of base stocks is typically done to determine their suitability for use in engine oil formulations. A significant number of the calibration oils for this method are base stocks that could be used in engine oil formulations.1.1 This test method covers the laboratory determination of apparent viscosity of engine oils and base stocks by cold cranking simulator (CCS) at temperatures between –5 and –35°C at shear stresses of approximately 50 000 to 100 000 Pa and shear rates of approximately 105 to 104 s–1 for viscosities of approximately 900 to 25 000 mPa·s. The range of an instrument is dependent on the instrument model and software version installed. Apparent Cranking Viscosity results by this method are related to engine-cranking characteristics of engine oils. 1.2 A special procedure is provided for measurement of highly viscoelastic oils in manual instruments. See Appendix X2. 1.3 Procedures are provided for both manual and automated determination of the apparent viscosity of engine oils using the cold-cranking simulator. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning s......

Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between x2013;5 and x2013;35x00B0;C Using Cold-Cranking Simulator

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2010
实施

This test method was developed to assess the performance of a heavy-duty engine oil in controlling engine wear under operating conditions selected to accelerate soot production and valve-train wear in a turbocharged and aftercooled four-cycle diesel engine with sliding tappet followers equipped with exhaust gas recirculation hardware. The design of the engine used in this test method is representative of many, but not all, modern diesel engines. This factor, along with the accelerated operating conditions, shall be considered when extrapolating test results.1.1 This test method, commonly referred to as the Cummins ISB Test, covers the utilization of a modern, 5.9 L, diesel engine equipped with exhaust gas recirculation and is used to evaluate oil performance with regard to valve-train wear. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions8212;SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, National Pipe Threads/diameters, tubing size, or where there is a sole source of supply equipment specification. 1.2.2 See also A8.1 for clarification; it does not supersede 1.2 and 1.2.1. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A1 for general safety precautions.

Standard Test Method for Evaluation of Automotive Engine Oils for Valve-Train Wear Performance in Cummins ISB Medium-Duty Diesel Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2010
实施

This bench test method is intended to produce comparable oil aging characteristics to those obtained with ASTM TMC Sequence IIIGA matrix reference oils 434, 435 and 438 after aging in the Sequence IIIG engine test. To the extent that the method generates aged oils comparable to those from the Sequence IIIG engine test, the measured increases in kinematic and MRV viscosity indicate the tendency of an oil to thicken because of volatilization and oxidation, as in the Sequence IIIG and IIIGA (see Appendix X1 in Test Method D 7320) engine tests, respectively. This bench test procedure has potential use in specifications and classifications of engine lubricating oils, such as Specification D 4485.1.1 This test method describes a bench procedure to simulate the oil aging encountered in Test Method D 7320, the Sequence IIIG engine test method. These aged oils are then tested for kinematic viscosity and for low-temperature pumpability properties as described in the Sequence IIIGA engine test, Appendix X1 of Test Method D 7320. 1.2 Units8212;The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exceptions8212;There are no SI equivalents for some apparatus in Section 6, and there are some figures where inch units are to be regarded as standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Sections 7 and 8. 1.4 This test method is arranged as follows: Section Scope1 Reference Documents2 Terminology3 Summary of Test Method4 Significance and Use5 Apparatus6 Reagents and Materials7 Hazards8 Reference Oil Testing and Test Stand Calibration9 Procedure10 Cleaning11 Calculations and Determination of Test Results12 Report13 Precision and Bias14 Keywords15 Annexes Reaction VesselAnnex A1 Reaction Vessel Head

Standard Test Method for Bench Oxidation of Engine Oils by ROBO Apparatus

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2009
实施

This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance. This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following: (final API designation of PG-1), Military Specification MIL-L-2105, SAE Information Report J308 Axle and Manual Transmission Lubricants, and Mack Truck GO-H Gear Lubricant Specification.1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures. 1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range. 1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer. 1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC). The test method will be revised to show the content of all the letters, as issued. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5.1 Exception8212;When materials, products, or equipment are available only in inch-pound units, SI units are omitted. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.7 This test method is arranged as follows: Section Scope 1 Referenced Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Apparatus 6 Test Transmission 6.2 Transmission Mounts 6.3 Oil-Circulating System 6.4 Oil Return Hole 6.5 Air Pressure Controls 6.6 Drive System 6.7 Instrumentation 6.8 Thermocouple Placement 6.9

Standard Test Method for Evaluating the Thermal Stability of Manual Transmission Lubricants in a Cyclic Durability Test

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2009
实施

This test method measures the tendency of automotive manual transmission and final drive lubricants to deteriorate under high-temperature conditions, resulting in thick oil, sludge, carbon and varnish deposits, and the formation of corrosive products. This deterioration can lead to serious equipment performance problems, including, in particular, seal failures due to deposit formation at the shaft-seal interface. This test method is used to screen lubricants for problematic additives and base oils with regard to these tendencies. This test method is used or referred to in the following documents: American Petroleum Institute (API) Publication 1560-Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles, STP-512A–Laboratory Performance Tests for Automotive Gear Lubricants Intended for API GL-5 Service, SAE J308-Information Report on Axle and Manual Transmission Lubricants, and U.S. Military Specification MIL-L-2105D.1.1 This test method is commonly referred to as the L-60-1 test. It covers the oil-thickening, insolubles-formation, and deposit-formation characteristics of automotive manual transmission and final drive axle lubricating oils when subjected to high-temperature oxidizing conditions. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.2.1 Exceptions8212;The values stated in SI units for catalyst mass loss, oil mass and volume, alternator output, and air flow are to be regarded as standard. 1.2.2 SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, or where there is a sole source supply equipment specification. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 7 and 8 and Annex A3.

Standard Test Method for Evaluation of the Thermal and Oxidative Stability of Lubricating Oils Used for Manual Transmissions and Final Drive Axles

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2009
实施

This method measures the concentration of ATP present in the sample. ATP is a constituent of all living cells, including bacteria and fungi. Consequently, the presence of ATP is an indicator of total microbial contamination in metalworking fluids. ATP is not associated with matter of non-biological origin. Method D 4012 validated ATP as a surrogate for culturable bacterial data (Guide E 1326). This method differs from Method D 4012 in that it eliminates interferences that have historically rendered ATP testing unusable with complex organic fluids such as MWF. The ATP test provides rapid test results that reflect the total bioburden in the sample. It thereby reduces the delay between test initiation and data capture, from the 36 h to 48 h (or longer) required for culturable colonies to become visible, to approximately five minutes. Although ATP data covary strongly with culture data in MWF , different factors affect ATP concentration than those that affect culturability. Culturability is affected primarily by the ability of captured microbes to proliferate on the growth medium provided, under specific growth conditions. It have been estimated that less than 1 % of the species present in an environmental sample will form colonies under any given set of growth conditions. ATP concentration is affected by: the microbial species present, the physiological states of those species, and the total bioburden (See Appendix X1). One example of the species effect is that the amount of ATP per cell is substantially greater for fungi than bacteria. Within a species, cells that are more metabolically active will have more ATP per cell than dormant cells. The greater the total bioburden, the greater the ATP concentration in a sample. The possibility exists that the rinse step (11.15) may not eliminate all chemical substances that can interfere with the bioluminescence reaction (11.39). The presence of any such interferences can be evaluated by performing a standard addition test series as described in Appendix X3. Any impact of interfering chemicals will be reflected as bias relative to data obtained from fluid that does not contain interfering chemicals.1.1 The method provides a protocol for capturing, extracting and quantifying the adenosine triphosphate (ATP) content associated with microorganisms found in water-miscible metalworking fluids (MWF). 1.2 The ATP is measured using a bioluminescence enzyme assay, whereby light is generated in amounts proportional to the concentration of ATP in the samples. The light is produced and measured quantitatively as relative light units (RLU) which are converted by comparison with an ATP standard and computation to pg ATP/mL. 1.3 This method is equally suitable for use in the laboratory or field. 1.4 The method detects ATP concentrations in the range of 4.0 pg ATP/mL to 400,000 pg ATP/mL. 1.5 Providing interferences can be overcome, bioluminescence is a reliable and proven method for qualifying and quantifying ATP. The method does not differentiate between ATP from different sources, for example, from different types of microorganisms, such as bacteria and fungi. 1.6 The values stated in SI are to be regarded as standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Measurement of Adenosine Triphosphate in Water-Miscible Metalworking Fluids

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E39
发布
2009
实施

This test method covers the rapid determination of 22 elements in used lubricating oils and in base oils, and it provides rapid screening of used oils for indications of wear. Test times approximate a few minutes per test specimen, and detectability for most elements is in the low mg/kg range. In addition, this test method covers a wide variety of metals in virgin and re-refined base oils. Twenty-two elements can be determined rapidly, with test times approximating several minutes per test specimen. When the predominant source of additive elements in used lubricating oils is the additive package, significant differences between the concentrations of the additive elements and their respective specifications can indicate that the incorrect oil is being used. The concentrations of wear metals can be indicative of abnormal wear if there are baseline concentration data for comparison. A marked increase in boron, sodium, or potassium levels can be indicative of contamination as a result of coolant leakage in the equipment. This test method can be used to monitor equipment condition and define when corrective actions are needed. The concentrations of metals in re-refined base oils can be indicative of the efficiency of the re-refining process. This test method can be used to determine if the base oil meets specifications with respect to metal content.1.1 This test method covers the determination of additive elements, wear metals, and contaminants in used lubricating oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. 1.2 This test method covers the determination of selected elements, listed in Table 1, in re-refined and virgin base oils. 1.3 For analysis of any element using wavelengths below 190 nm, a vacuum or inert-gas optical path is required. The determination of sodium and potassium is not possible on some instruments having a limited spectral range. 1.4 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers. 1.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision. 1.6 For elements other than calcium, sulfur, and zinc, the low limits listed in Table 2 and Table 3 were estimated to be ten times the repeatability standard deviation. For calcium, sulfur, and zinc, the low limits represent the lowest concentrations tested in the interlaboratory study. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 6.1, 8.2, and 8.4. TABLE 1 Elements Determined and Suggested WavelengthsA ElementWavelength, nm Aluminum308.22, 396.15, 309.27 Barium233.53, 455.40, 493.41 Boron

Standard Test Method for Determination of Additive Elements, Wear Metals, and Contaminants in Used Lubricating Oils and Determination of Selected Elements in Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2009
实施

This test method is useful in evaluating the degree to which a grease would separate into fluid and solid components when subjected to high centrifugal forces. Flexible shaft couplings, universal joints, and rolling element thrust bearings are examples of machinery which subject lubricating greases to large and prolonged centrifugal forces. This test method has been found to give results that correlate well with results from actual service. The test method may be run at other conditions with agreement between parties but the precision noted in this test method will no longer apply. 1.1 This test method covers a procedure for determining the tendency of lubricating grease to separate oil when subjected to high centrifugal forces. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Oil Separation From Lubricating Grease by Centrifuging (Koppers Method)

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E36
发布
2009
实施

This practice is intended to help users, particularly power plant operators, maintain effective control over their mineral lubricating oils and lubrication monitoring program. This practice may be used to perform oil changes based on oil condition and test results rather than on the basis of service time or calendar time. It is intended to save operating and maintenance expenses. This practice is also intended to help users monitor the condition of mineral lubricating oils and guard against excessive component wear, oil degradation, or contamination, thereby minimizing the potential of catastrophic machine problems that are more likely to occur in the absence of such an oil condition monitoring program. This practice does not necessarily reference all of the current oil testing technologies and is not meant to preclude the use of alternative instrumentation or test methods which provide meaningful or trendable test data, or both. Some oil testing devices and sensors (typically used for screening oils which will be tested according to standard methods) provide trendable indicators which correlate to water, particulates, and other contaminants but do not directly measure these. This practice is intended for mineral type of oil products, and not for synthetic type of products, with the exception of phosphate esters fluids used typically in power plant control systems.1.1 This practice covers the requirements for the effective monitoring of mineral oil and phosphate ester fluid lubricating oils in service auxiliary (non-turbine) equipment used for power generation. Auxiliary equipment covered includes gears, hydraulic systems, diesel engines, pumps, compressors, and electrohydraulic control (EHC) systems. It includes sampling and testing schedules and recommended action steps, as well as information on how oils degrade. Note 18212;Other types of synthetic lubricants are sometimes used but are not addressed in this practice because they represent only a small fraction of the fluids in use. Users of these fluids should consult the manufacturer to determine recommended monitoring practices. 1.2 This practice does not cover the monitoring of lubricating oil for steam and gas turbines. Rather, it is intended to complement Practice D4378. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Practice for In-Service Monitoring of Lubricating Oil for Auxiliary Power Plant Equipment

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2009
实施

The determination of endotoxin concentrations in metalworking fluids is a parameter that can be used in decision-making for prudent fluid management practices (fluid draining, cleaning, recharging or biocide dosages). This test method provides a test method for analysts who perform quantitative endotoxin analyses of water-miscible metalworking fluids.1.1 This test method covers quantitative methods for the sampling and determination of bacterial endotoxin concentrations in water miscible metalworking fluids (MWF). 1.2 Users of this test method need to be familiar with the handling of MWF. 1.3 This test method gives an estimate of the endotoxin concentration in the sampled MWF. 1.4 This test method replaces E 2250. 1.5 This test method seeks to minimize inter-laboratory variation of endotoxin data but does not ensure uniformity of results. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Endotoxin Concentrations in Water-Miscible Metalworking Fluids

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E39
发布
2009
实施

1.1 This specification covers engine oils for light-duty and heavy-duty internal combustion engines used under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. 1.2 This specification is not intended to cover engine oil applications such as outboard motors, snowmobiles, lawn mowers, motorcycles, railroad locomotives, or oceangoing vessels. 1.3 This specification is based on engine test results that generally have been correlated with results obtained on reference oils in actual service engines operating with gasoline or diesel fuel. As it pertains to the API SL engine oil category, it is based on engine test results that generally have been correlated with results obtained on reference oils run in gasoline engine Sequence Tests that defined engine oil categories prior to 2000. It should be recognized that not all aspects of engine oil performance are evaluated by the engine tests in this specification. In addition, when assessing oil performance, it is desirable that the oil be evaluated under actual operating conditions. 1.4 This specification includes bench and chemical tests that help evaluate some aspects of engine oil performance not covered by the engine tests in this specification. 1.5 The test procedures referred to in this specification that are not yet standards are listed in Table 1. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6.1 Exceptions8212;The roller follower shaft wear in Test Method D 5966 is in mils. Appendix X2 descriptions are verbatim API language, which contains a few non-SI units. TABLE 1 Test Procedures Test ProcedureASTM PublicationsA T-6RR: D02–1219B T-7RR: D02–1220C ISMunder developmentD ISBunder developmentE C13under developmentF A Research Reports are available from ASTM International Headquarters. Request by Research Report No. B Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-6. C Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Mack T-7. D Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Cummins ISM. E Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Cummins ISB. F Multicylinder Engine Test Procedure for the Evaluation of Lubricants-Caterpillar C13.

Standard Specification for Performance of Engine Oils

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2009
实施

The determination of engine oil volatility at 371°C (700°F) is a requirement in some lubricant specifications. This test method is intended as an alternative to Test Methods D 5800 and the Noack method for the determination of engine oil volatility (CEC L-40–93). The data obtained from this test method are not directly equivalent to Test Method D 5800. The calculated results of the oil volatility estimation by this test method can be biased by the presence of additives (polymeric materials), which may not completely elute from the gas chromatographic column, or by heavier base oils not completely eluting from the column. The results of this test method may also not correlate with other oil volatility methods for nonhydrocarbon synthetic oils. This test method can be used on lubricant products not within the scope of other test methods using simulated distillation methodologies, such as Test Method D 2887.1.1 This test method covers an estimation of the amount of engine oil volatilized at 371°C (700°F). 1.1.1 This test method can also be used to estimate the amount of oil volatilized at any temperature between 126 and 371°C, if so desired. 1.2 This test method is limited to samples having an initial boiling point (IBP) greater than 126°C (259°F) or the first calibration point and to samples containing lubricant base oils with end points less than 615°C (1139°F) or the last n-paraffins in the calibration mixture. By using some instruments and columns, it is possible to extend the useful range of the test method. 1.3 This test method uses the principles of simulated distillation methodology. 1.4 This test method may be applied to both lubricant oil base stocks and finished lubricants containing additive packages. These additive packages generally contain high molecular weight, nonvolatile components that do not elute from the chromatographic column under the test conditions. The calculation procedure used in this test method assumes that all of the sample elutes from the column and is detected with uniform response. This assumption is not true for samples with nonvolatile additives, and application of this test method under such conditions will yield results higher than expected. For this reason, results by this test method are reported as area percent of oil. 1.5 The values stated in SI units are to be regarded as standard. The values stated in inch-pound units are provided for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Estimation of Engine Oil Volatility by Capillary Gas Chromatography

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2009
实施

This test method usually requires several minutes per sample. This test method covers eight elements and thus provides more elemental composition data than Test Method D 4628 or Test Methods D 4927. In addition, this test method provides more accurate results than Test Method D 5185, which is intended for used lubricating oils and base oils. Additive packages are blends of individual additives, which can act as detergents, antioxidants, antiwear agents, and so forth. Many additives contain one or more elements covered by this test method. Additive package specifications are based, in part, on elemental composition. Lubricating oils are typically blends of additive packages, and their specifications are also determined, in part, by elemental composition. This test method can be used to determine if additive packages and unused lubricating oils meet specifications with respect to elemental composition.1.1 This test method covers the quantitative determination of barium, boron, calcium, copper, magnesium, molybdenum, phosphorus, sulfur, and zinc in unused lubricating oils and additive packages. 1.2 The precision statements are valid for dilutions in which the mass % sample in solvent is held constant in the range of 1 to 5 mass % oil. 1.3 The precision tables define the concentration ranges covered in the interlaboratory study. However, both lower and higher concentrations can be determined by this test method. The low concentration limits are dependent on the sensitivity of the ICP instrument and the dilution factor. The high concentration limits are determined by the product of the maximum concentration defined by the linear calibration curve and the sample dilution factor. 1.4 Sulfur can be determined if the instrument can operate at a wavelength of 180 nm. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
E34
发布
2009
实施

This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance. This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following: (final API designation of PG-1), Military Specification MIL-L-2105, SAE Information Report J308 Axle and Manual Transmission Lubricants, and Mack Truck GO-H Gear Lubricant Specification.1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures. 1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range. 1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer. 1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC). The test method will be revised to show the content of all the letters, as issued. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5.1 Exception8212;When materials, products, or equipment are available only in inch-pound units, SI units are omitted. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.7 This test method is arranged as follows: Section Scope 1 Referenced Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Apparatus 6 Test Transmission 6.2 Transmission Mounts 6.3 Oil-Circulating System 6.4 Oil Return Hole 6.5 Air Pressure Controls 6.6 Drive System 6.7 Instrumentation 6.8 Thermocouple Placement 6.9

Standard Test Method for Evaluating the Thermal Stability of Manual Transmission Lubricants in a Cyclic Durability Test

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2009
实施

This test method was developed to evaluate automotive engine oils for protection against oil thickening and engine wear during moderately high-speed, high-temperature service. The increase in oil viscosity obtained in this test indicates the tendency of an oil to thicken because of oxidation. In automotive service, such thickening can cause oil pump starvation and resultant catastrophic engine failures. The deposit ratings for an oil indicate the tendency for the formation of deposits throughout the engine, including those that can cause sticking of the piston rings in their grooves. This can be involved in the loss of compression pressures in the engine. The camshaft and lifter wear values obtained in this test provide a measure of the anti-wear quality of an oil under conditions of high unit pressure mechanical contact. The test method was developed to correlate with oils of known good and poor protection against oil thickening and engine wear. Specially formulated oils that produce less than desirable results with unleaded fuels were also used during the development of this test. The Sequence IIIG engine oil test has replaced the Sequence IIIF test and can be used in specifications and classifications of engine lubricating oils, such as the following: Specification D4485, Military Specification MIL-PRF-2104, and SAE Classification J183.1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, varnish deposition, oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils that are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. 1.1.1 Additionally, with nonmandatory supplemental requirements, a IIIGA Test (Mini Rotary Viscometer and Cold Cranking Simulator measurements), a IIIGVS Test (EOT viscosity increase measurement), or a IIIGB Test (phosphorous retention measurement) can be conducted. These supplemental test procedures are contained in Appendixes Appendix X1, Appendix X2, and Appendix X3, respectively. Note 18212;Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 Exception8212;Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, and tubing size. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 6.14.1.1 and 7.1. 1.4 This test method is arranged as follows: Section Introduction Scope1 Referenced Documents2 Terminology3 Summary of Test Method4

Standard Test Method for Evaluation of Automotive Engine Oils in the Sequence IIIG, Spark-Ignition Engine

ICS
75.100 (Lubricants, industrial oils and related pr
CCS
发布
2009
实施



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号