83.140.30 塑料管、配件和阀门 标准查询与下载



共找到 536 条与 塑料管、配件和阀门 相关的标准,共 36

本文件规定了双增强钢丝网增强聚乙烯复合管材的术语和定义、材料、一般规定、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于输送介质温度不超过40 ℃的消防、给水复合管材。

Double reinforced-cross helically wound steel wires reinforced polyester-polyethylene plastic composite pipe

ICS
83.140.30
CCS
C292
发布
2022-06-22
实施
2022-06-29

UHMW-PTE方型耐磨增强管的定义、符号、材料、产品分类与标记、管材结构与连接方式、技术要求、试验方法、检验规则和标志、运输、贮存

UHMW-PTE square wear-resistant reinforced pipe for buried drainage

ICS
83.140.30
CCS
C292
发布
2022-06-18
实施
2022-06-18

埋地排水管使用时承受了一定的外压负载,并深埋于地下受地质土壤环境因素的影响。因此管材设 计的关键要求是在保证环刚度、环柔性、冲击性能、耐老化性能、耐酸碱耐腐蚀等性能条件下实现低碳 环保,FRPO复合增强中空缠绕管作为一种拥有独特生产工艺的产品通过聚丙烯料、纳米材料、增容剂等 高分子共混与改性聚烯烃耐磨料热熔双层复合挤出制成矩管经缠绕成型。管道内外壁光滑平整,在管道 内壁耐磨层加入改性聚烯烃耐磨料,增强管道的耐磨抗腐性延长管道的使用寿命;外壁采用聚丙烯二次 复合缠绕加强,使管材抗压、抗弯、抗拉伸、内承压和缠绕接缝强度大大提高。 本标准规定了FRPO复合增强中空缠绕管(以下简称管材)的术语和定义、符号、材料、管材分类及 标记、结构型式和连接方式、要求、试验方法、检验规则和标志、运输和贮存。 本标准适用于中部矩管采用改性聚丙烯挤出成型同时内壁加入改性聚烯烃耐磨料形成耐磨层,外壁 采用聚丙烯二次复合缠绕加强的中空缠绕管材。 本标准规定的管材适用于长期输送介质温度在45℃以下的无压或低压(0.4MPa)埋地城镇排水、工 业排水以及农田排水等工程。

Group Standard for "FRPO Composite Reinforced Hollow Winding Pipe for Buried Drainage"

ICS
83.140.30
CCS
C292
发布
2022-05-26
实施
2022-05-26

本文件规定了阻燃聚乙烯电线电缆套管(以下简称管材)的分类、要求、试验方法、检验规则及标 志、包装、运输和贮存。  本文件适用于以聚乙烯为主要原料,加入阻燃剂等添加剂,经挤出成型的管材,用于建筑等行业用 的电线电缆套管。

Flame retardant polyethylene wire and cable sleeve

ICS
83.140.30
CCS
C291
发布
2022-05-23
实施
2022-05-24

管材结构、连接方式、颜色、外观、规格尺寸、物理力学性能要求、管材连接时的密封性能(系统的适用性)

Polygonal composite pipes for underground drainage and sewerage- Part 1: Polyethylene(HDPE) wave wheel reinforced composite pipes

ICS
83.140.30
CCS
C292
发布
2022-05-20
实施
2022-06-14

钢纤增强聚乙烯复合管材(以下简称管材)与管件的术语和定义、材料、要求、试验方法、检验规则和标志、包装、运输、贮存。

Cross helically wound steel fibers reinforced-polyethylene composite pipelines

ICS
83.140.30
CCS
C292
发布
2022-05-10
实施
2022-06-02

MUHDPE-PANS缠绕结构壁A型管的定义、符号和缩略语,材料、管材结构与连接方式、技术要求、试验方法、检验规则、标志、运输、贮存

Muhdpe-PANS winding structure wall A-type pipe

ICS
83.140.30
CCS
C292
发布
2022-04-21
实施
2022-04-21

MUHDPE-PANS合金管的定义、符号和缩略语,材料、管材结构与连接方式、技术要求、试验方法、检验规则、标志、运输、贮存

Muhdpe-PANS alloy pipe

ICS
83.140.30
CCS
C292
发布
2022-04-21
实施
2022-04-21

主要技术内容有术语和定义、材料、产品分类、要求、试验方法、检验规则和标志、包装、运输、贮存。

Random copolymerized polypropylene (PP-R) antibacterial pipes for cold and hot water

ICS
83.140.30
CCS
C292
发布
2022-04-18
实施
2022-04-20

主要技术内容有术语与定义、要求、试验方法、检验规则、标志、包装、运输和贮存。

High density polyethylene (HDPE) pipes and accessories for marine aquaculture cage frame system

ICS
83.140.30
CCS
C292
发布
2022-04-18
实施
2022-04-20

Rigid polyvinyl chloride (PVC-U) rainwater pipes and fittings for construction

ICS
83.140.30
CCS
G33
发布
2022-04-08
实施
2022-10-01

本文件规定了以无规共聚聚丙烯(PP-R)混配料为原料,经注射成型的聚丙烯管件(以下简称管件)的术语、定义、符号和缩略语、材料、产品分类、基本要求、技术要求、试验方法、检验规则、标志、包装、运输、贮存、服务承诺。 本文件适用于民用建筑物内冷热水管道系统,包括饮用水和采暖管道系统的 PP-R 管件。 本文件不适用于灭火系统。

Polypropylene random copolymer(PP-R) fittings for hot and cold water

ICS
83.140.30
CCS
C292
发布
2022-03-31
实施
2022-04-30

1.1 This test method describes two essentially equivalent procedures: one for obtaining a long-term hydrostatic strength category based on stress, referred to herein as the hydrostatic design basis (HDB); and the other for obtaining a long-term hydrostatic strength category based on pressure, referred to herein as the pressure design basis (PDB). The HDB is based on the material’s long-term hydrostatic strength (LTHS),and the PDB is based on the product’s long-term hydrostatic pressure-strength (LTHSP). The HDB is a material property and is obtained by evaluating stress rupture data derived from testing pipe made from the subject material. The PDB is a product specific property that reflects not only the properties of the material(s) from which the product is made, but also the influence on product strength by product design, geometry, and dimensions and by the specific method of manufacture. The PDB is obtained by evaluating pressure rupture data. The LTHS is determined by analyzing stress versus time-to-rupture (that is, stress-rupture) test data that cover a testing period of not less than 10 000 h and that are derived from sustained pressure testing of pipe made from the subject material. The data are analyzed by linear regression to yield a best-fit log-stress versus log time-to-fail straight-line equation. Using this equation, the material’s mean strength at the 100 000-h intercept (LTHS) is determined by extrapolation. The resultant value of the LTHS determines the HDB strength category to which the material is assigned. The LTHSP is similarly determined except that the determination is based on pressure versus time data that are derived from a particular product. The categorized value of the LTHSP is the PDB. An HDB/PDB is one of a series of preferred long-term strength values. This test method is applicable to all known types of thermoplastic pipe materials and thermoplastic piping products. It is also applicable for any practical temperature and medium that yields stress-rupture data that exhibit an essentially straight-line relationship when plotted on log stress (pound-force per square inch) or log pressure (pound-force per square in. gage) versus log time-to-fail (hours) coordinates, and for which this straightline relationship is expected to continue uninterrupted through at least 100 000 h. 1.2 Unless the experimentally obtained data approximate a straight line, when calculated using log-log coordinates, it is not possible to assign an HDB/PDB to the material. Data that exhibit high scatter or a “knee” (a downward shift, resulting in a subsequently steeper stress-rupture slope than indicated by the earlier data) but which meet the requirements of this test method tend to give a lower forecast of LTHS/LTHSP. In the case of data that exhibit excessive scatter or a pronounced “knee,” the lower confidence limit requirements of this test method are not met and the data are classified as unsuitable for analysis. 1.3 A fundamental premise of this test method is that when the experimental data define a straight-line relationship in accordance with this test method’s requirements, this straight line may be assumed to continue beyond the experimental period, through at least 100 000 h (the time intercept at which the material’s LTHS/LTHSP is determined). In the case of polyethylene piping materials, this test method includes a supplemental requirement for the “validating” of this assumption. No such validation requirements are included for other materials (see Note 1). Therefore, in all these other cases, it is up to the user of this test method to determine based on outside information whether this test method is satisfactory for the forecasting of a material’s LTHS/LTHSP for each particular combination of internal/external environments and temperature. NOTE 1—Extensive long-term data that have been obtained on commercial pressure pipe grades of polyvinyl chloride (PVC), polybutylene (PB), and cross linked polyethylene (PEX) materials have shown that this assumption is appropriate for the establishing of HDB’s for these materials for water and for ambient temperatures. Refer to Note 2 and Appendix X1 for additional information. 1.4 The experimental procedure to obtain individual data points shall be as described in Test Method D1598, which forms a part of this test method. When any part of this test 1 This test method is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.40 on Test Methods. Current edition approved March 15, 2022. Published April 2022. Originally approved in 1969. Last previous edition approved in 2021 as D2837 – 21. DOI: 10.1520/D2837-22. *A Summary of Changes section appears at the end of this standard Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1 method is not in agreement with Test Method D1598, the provisions of this test method shall prevail. 1.5 General references are included at the end of this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only and are not considered the standard. NOTE 2—Over 3000 sets of data, obtained with thermoplastic pipe and piping assemblies tested with water, natural gas, and compressed air, have been analyzed by the Plastic Pipe Institute’s (PPI) Hydrostatic Stress Board2 . None of the currently commercially offered compounds included in PPI TR-4, “PPI Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe” exhibit knee-type plots at the listed temperature, that is, deviate from a straight line in such a manner that a marked drop occurs in stress at some time when plotted on equiscalar log-log coordinates. Ambient temperature stress-rupture data that have been obtained on a number of the listed materials and that extend for test periods over 120 000 h give no indication of “knees.” However, stress-rupture data which have been obtained on some thermoplastic compounds that are not suitable or recommended for piping compounds have been found to exhibit a downward trend at 23 °C (73 °F) in which the departure from linearity appears prior to this test method’s minimum testing period of 10 000 h. In these cases, very low results are obtained or the data are found unsuitable for extrapolation when they are analyzed by this test method. Extensive evaluation of stress-rupture data by PPI and others has also indicated that in the case of some materials and under certain test conditions, generally at higher test temperatures, a departure from linearity, or “down-turn”, may occur beyond this test method’s minimum required data collection period of 10 000 h. A PPI study has shown that in the case of polyethylene piping materials that are projected to exhibit a “down-turn” prior to 100 000 h at 73 °F, the long-term field performance of these materials is prone to more problems than in the case of materials which have a projected “down-turn” that lies beyond the 100 000-h intercept. In response to these observations, a supplemental “validation” requirement for PE materials has been added to this test method in 1988. This requirement is designed to reject the use of this test method for the estimating of the long-term strength of any PE material for which supplemental elevated temperature testing fails to validate this test method’s inherent assumption of continuing straight-line stress-rupture behavior through at least 100 000 h at 23 °C (73 °F). When applying this test method to other materials, appropriate consideration should be given to the possibility that for the particular grade of material under evaluation and for the specific conditions of testing, particularly, when higher test temperatures and aggressive environments are involved, there may occur a substantial “down-turn” at some point beyond the data collection period. The ignoring of this possibility may lead to an overstatement by this test method of a material’s actual LTHS/LTHSP. To obtain sufficient assurance that this test method’s inherent assumption of continuing linearity through at least 100 000 h is appropriate, the user should consult and consider information outside this test method, including very long-term testing or extensive field experience with similar materials. In cases for which there is insufficient assurance of the continuance of the straight-line behavior that is defined by the experimental data, the use of other test methods for the forecasting of long-term strength should be considered (see Appendix X1). 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products

ICS
83.140.30
CCS
发布
2022-03-15
实施

5.1 颜色 5.1.1 聚砜材质的管件本体一般为黑色。 5.1.2 铜合金材质的管件本体一般为铜本色。 5.1.3 加强环一般为本色。 5.2 外观 5.2.1 聚砜材质管件本体,应无水花,分型面应无毛刺、色斑、凹陷及其他影响性能的缺陷。 5.2.2 铜合金材质管件本体,应无裂痕、气孔、气泡、杂质、砂眼及其他影响性能的缺陷。 5.2.3 螺纹应完好、规整,无断扣、压伤、毛刺、划伤等缺陷。 5.2.4 加强环应光滑、平整、干净,无明显划痕、凹陷、气泡、杂质、色差及其他影响性能的缺陷。 5.3 尺寸规格 5.3.1 管件本体尺寸 5.3.1.1 管件本体示意图见图1。 5.3.1.2 聚砜材质管件本体插口尺寸应符合表2的规定。 5.3.1.3 聚砜材质管件本体插口尺寸偏差应符合表3的要求。 5.3.1.4 聚砜材质管件本体模具偏差造成的飞边和错位,见图2。 5.3.1.5 铜材质管件本体插口尺寸应符合表4的规定。 5.3.1.6 铜材质管件本体插口尺寸偏差应符合表5的要求。 5.3.2 加强环尺寸 5.3.2.1 加强环示意图见图3。 5.3.2.2 加强环尺寸应符合表6的规定。 5.4 管件本体性能 5.4.1 聚砜材质管件本体静液压强度 聚砜材质管件本体静液压强度应符合表7的规定。 5.4.2 铜材质管件本体气密性 铜材质管件本体进行气密性测试,试验中应无气泡产生。 5.5 加强环性能 5.5.1 加强环材料稳定性 加强环材料稳定性,由加强环材料制成管材后进行测试。加强环材料稳定性应符合表8的规定。 5.5.2 加强环物理性能 加强环物理性能应符合表9的规定。 5.6 卫生性能 用于输送饮用水的管件应符合GB/T 17219的规定。

Cold expansion fittings with reinforced rings for cross-linked polyethylene (PE-X) pipes

ICS
83.140.30
CCS
C292
发布
2022-03-07
实施
2022-06-17

8.1 颜色 管材颜色一般为本色,其他颜色可由供需双方协商确定。对于阻隔性管材,阻隔层和粘合剂的颜色宜与 PE-X 材料有明显区分。阻隔层和粘接层如添加色母,不应影响阻隔层和粘合剂层性能。 8.2 外观 管材表面颜色应均匀一致,不应有明显色差。管材的内外表面应光滑、平整、清洁,不应有明显划痕、凹陷、气泡、杂质以及其他影响产品性能的表面缺陷。管材端面应切割平整,并与轴线垂直。 8.3 规格及尺寸 8.3.1 管材规格用管系列S、公称外径dn×公称壁厚en表示。 示例: 管系列S5、公称外径32 mm、公称壁厚为2.9 mm 表示为:S5 dn 32 × en 2.9 8.3.2 管材的公称外径、平均外径以及管系列S对应的公称壁厚(不包括阻隔性管材的阻隔层和粘合剂层厚度)见表3。 8.3.3 管材(任一点)壁厚ey应符合表4的偏差要求。 8.3.4 直管长度一般为4 m或6 m,盘管长度一般为100 m、200 m或300 m,也可由供需双方协商确定。管材长度不应有负偏差。 盘管的最小盘卷内径不宜小于18dn,且不宜小于360 mm。 8.4 静液压强度 管材的静液压强度应符合表5的规定。 8.5 物理和化学性能 管材的物理和化学性能应符合表6的规定。 8.6 卫生性能 用于输送饮用水的管材应符合GB/T 17219的规定。

Cross-linked polyethylene (PE-X) pipes for hot and cold water installation

ICS
83.140.30
CCS
C292
发布
2022-03-07
实施
2022-06-16

1  范围 本文件规定了以112级聚乙烯混配料为原料,经挤出成型的给水用聚乙烯管材(以下简称“管材”)的术语和定义、符号、缩略语、材料、产品分类、要求、试验方法、检验规则、标志、包装、运输、贮存。 本文件适用于水温不大于40 ℃,最大工作压力(MOP)不大于2.0 MPa,一般用途的压力输水和饮用水输配的聚乙烯管道系统及其组件。 本文件适用于PE 112混配料制造的公称外径为16 mm~2 500 mm的给水用聚乙烯管材。 2  规范性引用文件 3  术语和定义、符号、缩略语 4  材料 5  产品分类 6  要求 7  试验方法 8  检验规则 9  标志 10  包装、运输、贮存 附录A(资料性)  工作温度下的压力折减系数 附录B(规范性)  带可剥离层的管材 附录C(资料性)  高耐慢速裂纹增长性能PE 112混配料和管材 附录D(资料性)  PN、MRS、S和SDR的关系 附录E(规范性)  PE 112管材耐慢速裂纹开裂的试验压力

112 grade polyethylene pipe for water supply

ICS
83.140.30
CCS
C292
发布
2022-01-30
实施
2022-01-30

This document specifies the characteristics of valves made from unplasticized polyamide (PA-U) in accordance with ISO 16486-1, intended to be buried and used for the supply of gaseous fuels. It is applicable to isolating unidirectional and bi-directional valves with spigot ends or electrofusion sockets intended to be fused with PA-U pipes or fittings conforming to ISO 16486-2 and ISO 16486-3 respectively. Valves made from material other than unplasticized polyamide designed for the supply of gaseous fuels conforming to the relevant standards are permitted to be used in PA-U piping systems according to the (see ISO 16486-3). The component, i.e. the complete valve, is required to fulfil the requirements of this document. This document also specifies the test parameters for the test methods it describes. In conjunction with ISO 16486-1, ISO 16486-2, ISO 16486-3 and ISO 16486-5, this document is applicable to PA-U valves and their joints and to joints with components of PA-U and other materials intended to be used under the following conditions: a) a maximum operating pressure (MOP) of up to and including 18 bar3), or limited to 16 bar under regional CEN requirements, at a reference temperature of 20 °C for design purposes; NOTE 1 For the purpose of this document and the references to ISO 8233, MOP is considered to be nominal pressure. b) an operating temperature of −20 °C to 40 °C; NOTE 2 For operating temperatures between 20 °C and 40 °C, derating coefficients are specified in This document covers valves for pipes with a nominal outside diameter, dn, ≤ 400 mm.

Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 4: Valves

ICS
83.140.30
CCS
发布
2022-01-14
实施

材料、管材分级和标记、管材结构型式和连接方式、颜色、外观、规格尺寸、管材的物理力学性能、系统适用性

PP moment circle reinforced polyethylene winding corrugated pipe for buried drainage and sewage

ICS
83.140.30
CCS
C292
发布
2022-01-07
实施
2022-01-07

5技术要求 5.1  原材料要求 改性材料中添加的磷石膏为无水磷石膏,无水磷石膏的添加量(质量分数)大于8%,细度为800目,无水磷石膏各项性能符合T/GZHG 026-2020的规定。 5.2 颜色 管材内外层各自的颜色应均匀一致,颜色一般为绿色,可供需双方商定。 5.3外观 管材内外壁应光滑、平整,不允许有气泡、裂口、明显痕纹、凹陷及分解变色线,不允许有通气槽。套管端面应切割平整并与轴线垂直。 5.4  长度 管材长度一般为6m,也可由供需双方商定。管材长度应包含承口部分长度。管材长度不允许有负偏差。 5.5 尺寸 管材尺寸符合表1的要求。 表  1管材尺寸 单位:mm 公称内径 DN/ID 最小平均内径 dim,min 最小层压壁厚 e1min 内层壁厚 e 最小接合长度 Amin 最小“U”形凹槽深度Hmin 最小承口壁厚 e 2 200 195 2.0 1.1 60 3.0 2.5 300 294 2.5 1.7 69 5.0 3.0 400 392 3.0 2.3 77 6.0 3.5 500 490 3.5 3.0 85 8.0 4.0 600 588 4.0 3.5 96 10.0 4.0 800 785 4.5 4.5 118 12.0 5.5 1000 985 6.0 5.0 140 14.0 6.0 1200 1185 8.0 5.0 162 16.0 6.0 1500 1485 8.0 5.0 178 18.0 6.0 5.6  分类 管材按环刚度分类,见表2。 表2    公称环刚度等级 等级 SN8 SN10 SN12.5 环刚度/( kN/m2) 8 10 12.5 5.7物理力学性能 5.7.1聚乙烯(无水磷石膏)复合改性材料的物理力学性能应符合表3的规定。 表3  材料的物理力学性能 序号 项目 单位 指标 试验方法 1 拉伸强度 MPa ≥20.7 6.4.1 2 弯曲模量 MPa ≥800 6.4.2 3 MFR(熔体质量流动速率) g/10min ≤3 6.4.3 5.7.2  管材的物理力学性能应符合表4的规定。 表4 管材的物理力学性能 序号 项目 单位 指标 试验方法 1 环刚度 SN8 kN/㎡ ≥8 6.4.4   SN10  ≥10    SN12.5  ≥12.5  2 落锤冲击试验 — 10/10通过 6.4.5 3 环柔性 — 试样圆滑,无反向弯曲,无破裂,两壁无脱开 6.4.6 4 烘箱试验 — 无气泡、无分层、无开裂 6.4.7 5 蠕变比率 % ≤4 6.4.8 6 OIT氧化诱导时间 min ≥20 6.4.9 6试验方法 6.1  状态调节和试验环境 除有特殊规定外,试样按照GB/T 2918-2018的规定,在(23±2)℃条件下对试样进行调节和试验,状态调节时间不应少于24h;内径公称尺寸大于600mm的管材,状态调节时间不应少于48h. 6.2  外观检查 目视检查,内部可用光源照看。 6.3  尺寸测量 6.3.1有效长度 按照GB/T 8806-2008的规定,用最小刻度不大于5mm的卷尺测量管材的有效长度。 6.3.2平均内径 按照GB/T 8806-2008的规定,用最小刻度不大于被测值0.1%的量具分别测量管材同一断面相互垂直的两内径,以两内径的算术平均值作为管材的平均内径。 6.3.3壁厚 按照GB/T 8806-2008的规定,将管材沿圆周进行不少于4等份的均分,测量层压壁厚、内层壁厚,承口壁厚,读取最小值。 6.3.4“U”形凹槽深度 按照GB/T 8806-2008的规定,用最小刻度不大于被测值0.1%的卡尺或深度尺,测量“U”形凹槽处深度,读取最小值。 6.3.5接合长度 按照GB/T 8806-2008的规定,按图2所示,用最小刻度不低于0.02mm的量具测量接合长度。 6.3.6承口平均内径 按照GB/T 8806-2008的规定,按图2所示,用最小刻度不低于0.02mm的量具测量承口相互垂直的两内径,以两内径的算术平均值作为测量结果。 6.4  物理力学性能 6.4.1拉伸强度 沿轴向按标准 GB/T 1040.2-2006取哑铃型试样,按标准 GB/T1040.2-2006的方法进行测试。 6.4.2弯曲模量 试样尺寸:沿轴向取长为80mm,宽10mm。按GB/T9341-2008方法测定。 6.4.3熔体质量流动速率 按GB/T3682.1-2018测定,试验温度190℃,砝码5公斤。 6.4.4环刚度 按GB/T 9647-2015?测定,取样时切割点应在波谷的中间。 6.4.5落锤冲击试验 试验按GB/T 14152-2001规定进行,取10个试样进行测定,每个试样冲击一次,试验温度(0±1)℃。落锤质量和冲击高度见表5。 表5  落锤冲击试验条件 内径/mm 落锤重量/kg 落下高度/mm d<500 2.5 1000 d≥500 3.2 2000 用肉眼观察,试验经冲击后产生裂纹、裂缝或试样破碎判为试样破坏,10个试样检测后未见裂纹、裂缝或试样,则为合格产品。 6.4.6环柔性 6.4.6.1  试样 从一根管材上取300±20mm长的管材三段,两端应与轴线垂直切平。 6.4.6.2  试验步骤 试验按GB/T 9647-2015进行,试验压力应连续增加。当试样在垂直方向外径变形量为原外径的30%立即卸荷,观察试样的内壁是否保持圆滑,内壁无反向弯曲,是否破裂,两壁是否脱开。 6.4.7烘箱试验 6.4.7.1  试样 取300±20mm长的管材三段,对公称外径≤400mm的管材,沿轴向切成2个大小相同的试样;对外径>400mm的管材,沿轴向切成4个大小相同的试样。 6.4.7.1  试验步骤 将烘箱温度设定为110±2℃,温度达到后,将试样放置在烘箱内,使其不相互接触且不与烘箱四壁接触。当层压壁厚e≤8mm时,在110±2℃下放置30min;当层压壁厚e>8mm时,在同样温度下放置60min,取出时不可使其变形或损坏它们,冷却至室温后观察,试样出现分层、开裂或起泡为试样不合格。 6.4.8蠕变比率 试验按GB/T 18042-2000的规定进行,试验温度为23±2℃,计算并外推至两年的蠕变比率。 6.4.9氧化诱导时间(OIT) 试验按GB/T 19466.6-2009的规定测试,试验温度200℃,分别取管材外壁和内壁样,测试由于试样氧化而引起的DTA曲线(差热谱)的变化,并获得氧化诱导时间(OIT),以评定塑料的防热老化性能。

Polyethylene (modified anhydrous phosphogypsum) double peak reinforced drainage pipe

ICS
83.140.30
CCS
C292
发布
2022-01-05
实施
2022-03-10

5技术要求 5.1  颜色 (MUHDPE)双波峰增强管内外层各自的颜色应均匀一致,颜色一般为绿色,可供需双方商定。 5.2  外观 (MUHDPE)双波峰增强管内外壁应光滑、平整,不允许有气泡、裂口、明显痕纹、凹陷及分解变色线,不允许有通气槽。套管端面应切割平整并与轴线垂直。 5.3  长度 (MUHDPE)双波峰增强管长度一般为6m,也可由供需双方商定。管材长度应包含承口部分长度。管材长度不允许有负偏差。 5.4  尺寸 (MUHDPE)双波峰增强管尺寸符合表1的要求。 表  1(MUHDPE)双波峰增强管尺寸 单位:mm 公称内径 DN/ID 最小平均内径 dim,min 最小层压壁厚 e1min 最小接合长度 Amin 最小“U”形凹槽深度 H min 最小承口壁厚 e 2 min 200 195 2.0 60 3.0 2.5 300 294 2.5 69 5.0 3.0 400 392 3.0 77 6.0 3.5 500 490 3.5 85 8.0 4.0 600 588 4.0 96 10.0 4.0 800 785 4.5 118 12.0 5.5 1000 985 6.0 140 14.0 6.0 1200 1185 8.0 162 16.0 6.0 1500 1485 8.0 178 18.0 6.0 5.5  分类 (MUHDPE)双波峰增强管按环刚度分类,见表2。 表2    公称环刚度等级 等级 SN8 SN10 SN12.5 SN16 环刚度/( kN/m2) 8 10 12.5 16 5.6物理力学性能 5.6.1纳米改性高密度聚乙烯材料的物理力学性能应符合表3的规定。 表3  材料的物理力学性能 序号 项目 单位 指标 试验方法 1 拉伸强度 MPa ≥22 6.4.1 2 断裂伸长率 % ≥300 6.4.1 3 弯曲模量 MPa ≥1250 6.4.2 4 MFR(熔体质量流动速率) g/10min ≤3 6.4.3 5.6.2  (MUHDPE)双波峰增强管的物理力学性能应符合表4的规定。 表4 (MUHDPE)双波峰增强管的物理力学性能 序号 项目 单位 指标 试验方法 1 环刚度 SN8 kN/㎡ ≥8 6.4.4   SN10  ≥10    SN12.5  ≥12.5    SN16  ≥16  2 落锤冲击试验 — 10/10通过 6.4.5 3 环柔性 — 试样圆滑,无反向弯曲,无破裂,两壁无脱开 6.4.6 4 烘箱试验 — 无气泡、无分层、无开裂 6.4.7 5 蠕变比率 % ≤4 6.4.8 6 OIT氧化诱导时间 min ≥20 6.4.9 7 密度 kg/m3 ≤1180 6.4.10 6试验方法 6.1  状态调节和试验环境 除有特殊规定外,试样按照GB/T 2918-2018的规定,在(23±2)℃条件下对试样进行调节和试验,状态调节时间不应少于24h;内径公称尺寸大于600mm的管材,状态调节时间不应少于48h. 6.2  外观检查 目视检查,内部可用光源照看。 6.3  尺寸测量 6.3.1有效长度 按照GB/T 8806-2008的规定,用最小刻度不大于5mm的卷尺测量管材的有效长度。 6.3.2平均内径 按照GB/T 8806-2008的规定,用最小刻度不大于被测值0.1%的量具分别测量管材同一断面相互垂直的两内径,以两内径的算术平均值作为管材的平均内径。 6.3.3壁厚 按照GB/T 8806-2008的规定,将管材沿圆周进行不少于4等份的均分,测量层压壁厚,承口壁厚,读取最小值。 6.3.4“U”形凹槽深度 按照GB/T 8806-2008的规定,用最小刻度不大于被测值0.1%的卡尺或深度尺,测量“U”形凹槽处深度,读取最小值。 6.3.5接合长度 按照GB/T 8806-2008的规定,按图2所示,用最小刻度不低于0.02mm的量具测量接合长度。 6.3.6承口平均内径 按照GB/T 8806-2008的规定,按图2所示,用最小刻度不低于0.02mm的量具测量承口相互垂直的两内径,以两内径的算术平均值作为测量结果。 6.4  物理力学性能 6.4.1拉伸强度和断裂伸长率 沿轴向按标准 GB/T 1040.2-2006取哑铃型试样,按标准 GB/T1040.2-2006的方法进行测试。 6.4.2弯曲模量 试样尺寸:沿轴向取长为80mm,宽10mm。按GB/T9341-2008方法测定。 6.4.3熔体质量流动速率 按GB/T3682.1-2018测定,试验温度190℃,砝码5公斤。 6.4.4环刚度 按GB/T 9647-2015?测定,取样时切割点应在波谷的中间。 6.4.5落锤冲击试验 试验按GB/T 14152-2001规定进行,取10个试样进行测定,每个试样冲击一次,试验温度(0±1)℃。落锤质量和冲击高度见表5。 表5  落锤冲击试验条件 内径/mm 落锤重量/kg 落下高度/mm d<500 3.2 1000 d≥500 5 2000 用肉眼观察,试验经冲击后产生裂纹、裂缝或试样破碎判为试样破坏。 6.4.6环柔性 6.4.6.1  试样 从一根(MUHDPE)双波峰增强管上取300±20mm长的管材三段,两端应与轴线垂直切平。 6.4.6.2  试验步骤 试验按GB/T 39385-2020进行,试验压力应连续增加。当试样在垂直方向外径变形量为原外径的30%立即卸荷,观察试样的内壁是否保持圆滑,有无反向弯曲,是否破裂,两壁是否脱开。 6.4.7烘箱试验 6.4.7.1  试样 取300±20mm长的管材三段,对公称外径≤400mm的管材,沿轴向切成2个大小相同的试样;对外径>400mm的管材,沿轴向切成4个大小相同的试样。 6.4.7.1  试验步骤 将烘箱温度设定为110±2℃,温度达到后,将试样放置在烘箱内,使其不相互接触且不与烘箱四壁接触。当层压壁厚e≤8mm时,在110±2℃下放置30min;当层压壁厚e>8mm时,在同样温度下放置60min,取出时不可使其变形或损坏它们,冷却至室温后观察,试样出现分层、开裂或起泡为试样不合格。 6.4.8蠕变比率 试验按GB/T 18042-2000的规定进行,试验温度为23±2℃,计算并外推至两年的蠕变比率。 6.4.9氧化诱导时间 试验按GB/T 19466.6-2009的规定测试,试验温度200℃,分别取管材外壁和内壁样,测试由于试样氧化而引起的DTA曲线(差热谱)的变化,并获得氧化诱导时间(OIT),以评定塑料的防热老化性能。 6.4.10  密度 试验按GB/T 1033.1-2008的规定测试。

Nano-modified high-density polyethylene (MUHDPE) double-peak reinforced buried drainage pipe

ICS
83.140.30
CCS
C292
发布
2022-01-05
实施
2022-03-10



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号