分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

Fluorescence Procedures forthe ActinandTubulin Cytoskeleton inFixed Cells-1

2019.4.27
头像

zhaochenxu

致力于为分析测试行业奉献终身

General Strategy

We typically work with tissue culture, primary mammalian cells, and cell extracts, but the protocols can be adapted to other systems, such as whole embryos or lower eukaryotes. The cytoskeleton is very dynamic and sensitive to changes in both the chemical and mechanical environment. Optimal conditions for fluorescence of proteins of the actin and tubulin cytoskeleton are based on: preserving cell structure; properties of individual cytoskeletal proteins and any antibodies to be used; background fluorescence. Buffers, fixes and detergents can dramatically affect cell preservation, and some antibodies will only bind antigen under specific fixation conditions. There is often quite a high level of actin monomer, tubulin subunits and cytoskeletal binding proteins free in the cytoplasm, especially in tissue culture cells. This can reduce the resolution of cytoskeletal polymers and makes it difficult to analyze the detailed localization of polymer binding proteins. To overcome this cells can be briefly extracted (seconds) before fixing under conditions that stabilize actin filaments or microtubules and preserve cell structure. This selectively removes free subunits/unbound binding proteins from the cytoplasm without causing significant changes in polymeric structure.


Growing Cells for Immunofluorescence

We plate cells on glass coverslips (12mm circles or similar ). We pretreat coverslips typically with poly-L-lysine (PLL) if cells are loosely adherent to glass. Polyornithine is better for some neurons. Cells can also be grown in a commercial, removable chamber attached to a plastic coverslip.


Preparing Glass Coverslips



Reagents and Buffers

BRB80 is good for microtubules and 'cytoskeleton buffer' is good for both actin filaments and microtubules. The optional inclusion of sucrose keeps the cells isoosmotic which also helps preservation.

Adding Solutions, Washing and Blocking

Mechanical manipulations should be kept to a minimum without compromising the quality of the final image. For cells on coverslips, aspirate solutions gently from the side of the dish or coverslip with one hand and add new solutions gently to the other side with your other hand. Never drop solutions directly onto the cells and do not allow cells to dry out. Rinsing cells before fixing does not make much difference. Residual serum proteins from the cell growth media may also help to 'buffer' cells during fixation. Washing off excessive antibodies is crucial for good staining. The block step minimizes background staining.


Secondary Antibodies

We normally purchase our fluorescently labelled secondary antibodies from Jackson Laboratories. We especially like their anti-IgG antibodies raised in donkey-- these are very clean. We follow their directions for reconstitution and storage. For a working solution, we dilute antibodies (usually 1:50 or 1:200-- you'll have to determine what works for you) in AbDil and store this at 4 deg C. If you notice high bakground, filter through a 0.2 um syringe filter or spin in a microfuge.



Procedures

For antibodies that have unknown properties on fixed cells it is best to start with one fixing condition that preserves native structure (e.g. formaldehyde or glutaraldehyde) and one fixing condition that denatures proteins (e.g. methanol or acetone). Simultaneous fixing and permeabilizing also works well for some antibodies. Generally for actin filaments and the actin cytoskeleton we prefer methanol over acetone fixation, and formaldehyde over glutaraldehyde fixation. Glutaraldehyde requires a reducing step that can mechanically dislodge any delicate actin-containing structures (e.g. filopodia, lamellipodia, retraction fibers, growth cones). Fluorescent-phalloidin is commonly used to stain actin filaments which only binds native actin.

For microtubules and the tubulin cytoskeleton the choice of fixative depends on whether the object of the experiment is to visualize microtubules alone or to visualize microtubules in addition to your favorite antigen. For microtubules alone, glutaraldehyde fixation after a brief extraction is preferable. For visualizing your favorite antigen with microtubules methanol seems to be the fixative of choice. Formaldehyde does not preserve microtubules very well; however, sometimes it is necessary to use formaldehyde and accept the poor microtubule morphology. In our lab, excellent microtubule co-immunufluorescence has been performed using straight methanol fixation for > 5 different antibodies.



生物在线
文章推荐