分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

Millipore密理博纯水系统常见问题集(六)

2019.10.11
头像

王辉

致力于为分析测试行业奉献终身

9.  硅是否会影响超纯水的电阻率?
在离子交换树脂接近耗尽的时候,硅离子是最先穿过树脂柱的离子。在标准配置纯化柱的情况下,在电阻率明显下降(表明纯化柱被耗尽)之前硅和硼都能够在产水中检测到。在纯化柱将被耗尽的最后时刻,大量的硅会在短时间内溶出到产水中。在这种情形下,尽管纯化水含有浓度很高的硅,但是电阻率——代表水质——却显示水质可以接受。
这种硅的溶出是因为混床离子交换树脂功效已经很低了,硅从树脂中溶出表明更换离子交换树脂的时候到了。
10.  怎样测量超纯水中热源的含量?
答:Millipore用终点发光测试法测量超纯水中热源的含量,这种方法简单,重现性好,它是把试剂和试样混合然后检测出现的黄光的强度。利用光度计测试终点发光测试:颜色的强度和样品中的内毒素含量直接相关。这种测试方法的灵敏度可达到0.001EU/ml。
样品同LAL试剂和显色试剂底物相混合经过短时间(16min)的孵化,用测量范围在405nm-410nm的分光光度计或平板读数器测量。
生物学法则:细菌内毒素使鲎变形细胞溶液中的酶原开始活化,鲎变形细胞溶使血凝中的组氨酸断开产生不透明性。在无色底物(S-2423)它很快催化发色体的分裂物,p-硝基苯胺。p-硝基苯胺产生的黄光可以在405-410nm能被光度计测量。
内毒素
酶原----------------------酶

底物----------------------组氨酸+  p-硝基苯胺
通过终点发色技术进行内毒素测试依赖于内毒素浓度和颜色变化的直接关系。
11.  Millipore的水纯化链是怎样验证热源含量水平的?
答:一种最有效的方法就是通过LAL测试来测量内毒素的含量。LAL---鲎变形细胞溶液是鲎血液中的蛋白。当这种试剂与内毒素相结合时会形成复杂的凝胶状化合物。
在反应终点时-发色体LAL测试用一种染料来检测凝胶的形成。在紫外光下测得的染色强度与形成的凝胶成比例。这种方法能够准确地测试水中热源的含量。终点发色体LAL测试方法的灵敏度是0.001EU/mL。
Milli-Q系统中的超滤柱通过了一个宽浓度范围的严格效率测试。
若内毒素挑战范围为22到22000EU/mL,Pyrogard的LRV(对数递减值)在5.65-7.6之间。
LRV=log(进水的内毒素含量/产水的内毒素含量)
Pyrogen  挑战性测试示意图 24
Milli-Q UF 热源挑战溶液 Pump
Pyrogard 5000 UF柱 热源去除效果 样挑战液 UF膜透过LRV  442 44,20442 44,20ABS003L ABS003H ABS004L ABS004H 0.001 < 0.001 <0.0011  0.0048 5.657.655.61 6.97
13.  电阻池以及系统与水接触的部件会不会滋生细菌?
细菌在这些与水接触的部件上繁殖的条件是这里有“死角”或者粗糙的表面。
如果电阻仪不是用316L抛光不锈钢生产,而是用相对便宜、边角粗糙的材料生产,细菌就会在这些粗糙的表面附着并繁殖。
在传统的棒状电阻仪中,电阻池呈“T”型。如图所示,水横向流过,被测量电阻率的水则滞留在电阻池的“死角”中。这一区域将滋生细菌。
Tee  Stagnant Water Cell Flowing Water
Support  blockThermistorElectrodes
Millipore重新优化设计了专用的电阻池,从而避免了“死角”的产生和水样的滞留。
25
14.  细菌会引起水中TOC水平的升高吗?
无论是活着的细菌还是死细菌都携带有结构复杂的有机分子,大量的这样的有机分子会对实验条件造成影响。细菌的数量如果上了百万,TOC水平就很可观了。
15.  杀灭细菌的最有效方法是什么?
有多种消毒试剂和方法可供选择。他们可以大致分为两大类:
化学方法:臭氧、氯、酒精、去垢剂等等
物理方法:加热、渗透压、辐射和过滤
氯处理是杀灭水中细菌最有效的方法之一。氯和水反应会生成次氯酸:
CL2  + H20 = HOCl + H+ + Cl-
低pH值更有利于次氯酸的生成。在pH较高的时候,次氯酸会解离出次氯酸根离子:
HOCl = OCl-  +  H+
次氯酸具有极强的杀菌作用。它能够通过穿透细菌的细胞壁从而瓦解细胞。次氯酸根离子的氧化能力是次氯酸的100倍,因此pH过高不利于杀菌(因为次氯酸根会被很快还原,来不及杀灭细菌)。
等效的杀菌方法还包括臭氧处理以及紫外光氧化。
紫外光氧化:
细菌的DNA暴露在紫外辐射之下会被改性。这一过程不可逆。最有效的杀菌波长在265nm左右,这是因为这一波长的紫外光能量最易被像胸腺嘧啶和胞嘧啶这样的嘧啶碱基所吸收。细菌的DNA非常容易被紫外辐射照射到,从而整个细菌都会失活。紫外灯使细菌失活的功率取决于紫外灯的类型和照射时间,同时和水通过紫外灯的驻留时间以及流速相关。  100% 80% 60% 40% 20% 0% 240 260 280  300
254nm
臭氧处理:臭氧是一种有效的杀菌剂。和化学处理(比如氯处理)不同,臭氧处理不会产生任何化学残留物,因此不会有任何有害的副作用。氧化细菌和其他化学药剂后,臭氧会在20分钟内自行消解,分解为纯氧气。这种方法成功的应用于无菌水的生产。
26
16.  如何用紫外灯最大限度的杀灭细菌?
使不同的微生物失活需要的紫外剂量是不同的。比如破坏细菌的DNA就比让孢子失活要容易。系统杀灭细菌的效率取决于紫外灯的种类、功率、照射时间、水通过紫外灯的驻留时间以及流速。
比如杀灭大肠埃希氏菌(Escherichia  coli)和假单胞绿铜菌(Pseudomonas   aeruginosa)分析需要6600和10500W.S/cm2的紫外剂量。当水系统配备一款6W、7cm、254nm的紫外灯,流速固定在10L /h,在石英灯壁上测得的能量损耗为4.08mW/cm2,这样落实在细菌上的紫外灯剂量则为37600W.s/cm2,这样的功率输出可以保证   99.9%的使上述两种细菌失活。
微生物
紫外剂量(W.s/cm2)
微生物
紫外剂量(W.s/cm2)
Bacillus  anthracis
8700
Molds
Bacillus subtilis
11000
Aspergillus  flavus
99000
Clostridium tetani
23100
Oospora  lactis
11000
Corynebacterium diphtheria
6500
Penicillium  chrysogenum
56000
Eberthella typhosa
4100
Rhizopus  nigricans
220000
Escherichia coli
6600
Protozoa
Mycobacterium  tuberculosis
10000
Blue green algae
420000
Salmonella  paratyphi
6100
Giardia lamblia
100000
Salmonella  typhi
7000
Paramecium
200000
Serratia marcescens
6160
Nematode  eggs
40000
Staphylococcus aureus
6600
Viruses
Vibrio  cholerae
6500
Bacteriophage
6600
Streptococcus  pyrogens
4200
Influenza
6600
Shigella dysenteriae
4200
Tobacco  Mosaic Virus
440000
Pseudomonas aeruginosa
10500
Yeasts
Proteus  vulgaris
6600
Baker’s Yeast
8800
Rhodospirillum  rubrum
6200
Saccharomyces cervisiae
13200
27

互联网
仪器推荐
文章推荐