分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

定量蛋白质组学质谱采集技术进展(一)

2020.5.18
头像

王辉

致力于为分析测试行业奉献终身

摘要 质谱是定量蛋白组学的主要工具。近年来随着定量蛋白质组学研究的深入,传统质谱定量技术面临着复杂基质干扰、分析通量限制等诸多问题。而最近一系列质谱新技术的发展,包括同步母离子选择(SPS)、质量亏损标记、平行反应监测(PRM)、多重累积(MSX)和多种全新数据非依赖性采集(DIA)等,为解决目前蛋白质组学在相对定量和绝对定量分析方面的局限提供了有效途径。本文对定量蛋白质组学目前遇到的瓶颈问题进行了分析,总结了质谱定量采集技术的最新进展,并评述了这些新技术的特点以及在定量蛋白质组学应用中的优势。

 

关键词 定量蛋白质组学; 同步母离子选择; 平行反应监测; 数据非依赖性采集; 综述

 

1引言

 

当今蛋白质组学的关注焦点和研究趋势已经逐渐从定性分析转向定量分析。定量蛋白质组学是对细胞、组织乃至完整生物体的蛋白质表达进行定量分析,对生物过程机理的探索和临床诊断标志物的发现与验证具有重要意义[1,2] 。定量蛋白质组学分为相对定量与绝对定量[3] 。相对定量即差异比较,通过质谱大规模、高通量地对两种或多种不同生理、病理条件下的样本进行定量分析,获得蛋白质表达量的精确差异,主要方法有稳定同位素标记和非标记两种技术手段[4,5] 。绝对定量即获得蛋白的具体表达量,利用质谱监测目标蛋白的专一性肽段(Unique Peptide)获得色谱-质谱峰面积,并与已知量的标准肽段(外标法)或稳定同位素标记的重标肽段(内标法)比较确定具体量,实现绝对定量。主要质谱方法是对专一性肽段进行选择反应监测或称多反应监测(Selected/ Multiple reaction monitoring, SRM/ MRM)[6] 。

 

稳定同位素标记技术是蛋白质组学相对定量的经典方法。样本在稳定同位素标记后、质谱分析前混合,一次分析实现差异定量,有效消除了色谱和质谱分离分析过程中的不稳定性,最大程度减小了定量误差。常见方法有基于代谢标记的SILAC[7] 、基于酶解标记的18 O 标记[8] 和基于化学标记的二甲基化[9] 等,这些方法通过一级母离子提取峰面积实现定量比较。但是,一级定量具有标记通量低、动态范围差、灵敏度不高等不足,因此, 近年来,基于同重同位素标记的二级定量方法使用越来越广泛[10] 。利用同重同位素标签标记肽段,在一级质谱不同样本的肽段分子量没有区分,相互叠加,提高了灵敏度;二级碎裂获得分子量不同的报告离子,在b/ y 离子定性的同时,通过报告离子之间的强度差异实现定量,提高了动态范围。同重同位素主要标记试剂有iTRAQ[11] 和TMT[12] ,标签容量分别达到了8 标和6 标。然而,同重同位素标记技术面临共洗脱肽段干扰的问题。蛋白质组学样本非常复杂,在色谱上存在大量共洗脱肽段,而质谱在选择母离子进行二级分析时,选择窗口通常在m / z 2 左右,分子量接近的共洗脱肽段被同时选择,碎裂出的报告离子与目标肽段报告离子叠加,降低了定量比例的准确性[13,14] 。Ting 等[15] 研究证明,在复杂样本中,共洗脱肽段严重干扰了报告离子的强度,造成肽段和蛋白的定量比例低于真实比例,产生“低估效应冶。这一问题已成为同重同位素标记定量技术的瓶颈。

 

基于三重四极杆的SRM(或称MRM)是质谱定量的金标准,在蛋白质绝对定量中也广泛使用[6] 。SRM 根据专一性肽段的母离子质量和子离子质量,第一级质量分析器(Q1)筛选母离子,进入碰撞池碎裂后,第二级质量分析器(Q3)再筛选子离子,最大程度地去除干扰离子,监测母离子-子离子形成的离子对的信号响应。通过外标法,利用已知量的标准肽段绘制标准曲线; 或内标法,直接加入已知量的同位素重标肽段同时监测,从而实现定性确证和定量检测[6,16] 。SRM 灵敏度高、线性范围广,是目标蛋白验证和绝对定量的有效手段。然而,随着定量蛋白质组学的深入发展,样本基质越来越复杂、目标蛋白丰度越来越低,容易受到高丰度蛋白的掩盖。而SRM 由于质量分辨率低,难以有效去除复杂基质背景的干扰,易造成假阳性[17,18] 。另一方面,随着分析通量的要求越来越高,一次分析可能需要监测成千上万个离子对,而SRM 速度和灵敏度的局限使得能同时监测的离子对数量有限[19] ; 此外,离子对、碰撞能量等条件的优化也费时费力,难以满足目标蛋白质组学高通量发展的需要,特别是大样本量的生物标志物和系统生物学研究[20,21] 。因此,蛋白质绝对定量同样面临着较大的技术挑战。

 

近两年来,随着以Orbitrap 为代表的高分辨质谱硬件技术不断进步、采集方法不断创新,定量蛋白质组学遇到的诸多瓶颈正逐步得到解决。这些技术包括基于同重同位素标记技术的同步母离子选择和质量亏损标记,相对于传统SRM 扫描的高分辨平行反应监测和多重累积-平行反应监测,以及多种全新数据非依赖性采集技术。

 

2同重同位素标记进展:同步母离子选择与质量亏损标记技术

 

以iTRAQ 和TMT 为代表的同重同位素标记技术面临着两方面的技术瓶颈:(1) 大量共洗脱肽段对定量准确性的影响:分子量接近的共洗脱肽段与目标肽段共同选择并碎裂,报告离子叠加,造成实际定量比例不能准确反映真实结果[13 ~15] ; (2) 等重同位素标签通量有限:以iTRAQ 为例,其报告基团(N-methylpiperazine)由6 个C 和2 个N 组成,因此容量上限为8 标,无法完成更高通量样本的分析[22] 。而通过增大报告基团来提升标签容量又会造成灵敏度的下降[23] 。

 

为解决共洗脱肽段干扰的问题,Ting 等[15] 使用LTQ-Orbitrap 进行MS3 扫描,对TMT 标记的样本进行分析(图1)。其中MS2 使用能量较低的CID (35%)碎裂,获得b/ y 离子碎片用于序列鉴定,同时确保了TMT 标签不会过多碎裂。在母离子m / z 110 ~160% 的范围内,选择最强的一个碎片离子,进行高能量HCD (60%)碎裂和MS3 检测,使报告基团充分碎裂,获得报告离子比例信息。结果表明,通过母离子和子离子双重筛选,共洗脱肽段的干扰能够被彻底去除,获得的定量比例与理论比例一致。例如,在掺入等比例人源蛋白的不同比例酵母全蛋白样本中,理论比值为10颐1,传统MS2 测得的比值仅约为3,而MS3 测的比值为11. 7,与理论比值非常接近。

 

但是与传统MS2 方法相比,MS3 信号强度明显降低。因此,虽然MS3 的定量准确度大大提高,但定量灵敏度却明显下降,也使得MS3 定量方法并没有普遍应用到实际分析中[24] 。此外,近来发展的TMT互补离子(TMTc) [25] 和QuantMode[26] 等技术虽然也能降低共洗脱肽段的干扰,但过程较为繁琐,准确度无法与MS3 方法相媲美。

 

1589790159640029.jpg

 

图1MS3 定量方法示意图[15] :(A) MS3 方法质谱采集过程; (B) MS3 与传统MS2 方法结果对比

 

Fig. 1Schematic elucidation of MS3 method[15] : (A) Acquisition workflow of MS3 ; (B) Comparison of MS3 and classic MS2 results.


互联网
文章推荐