分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

活体动物体内生物发光和荧光成像技术基础原理与应用四

2020.6.29
头像

王辉

致力于为分析测试行业奉献终身

二、活体动物荧光成像技术

 

(一)技术原理

1.标记原理

活体荧光成像技术主要有三种标记方法。

(1)荧光蛋白标记:荧光蛋白适用于标记细胞、病毒、基因等,通常使用的是GFP、EGFP、RFP(DsRed)等;

(2)荧光染料标记:荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等;

(3)量子点标记:量子点(quantum dot)是一种能发射荧光的半导体纳米微晶体,是由数百到数万个原子组成的原子簇,尺寸在100nm以下,外观恰似一极小的点状物。量子点作为一类新型的荧光标记材料,其在长时间生命活动监测及活体示踪方面具有独特的应用优势。与传统的有机荧光试剂相比较,量子点荧光比有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可调,并且光化学稳定性高,不易分解等诸多优点。主要应用在活细胞实时动态荧光观察与成像,可以在长达数天内进行细胞的分化和世系观察, 以及细胞间、细胞内及细胞器间的各种相互作用的原位实时动态示踪。不但如此,量子点还可以标记在其他需要研究的物质上,如药物、特定的生物分子等,示踪其活动及作用。

 

2.光学原理

荧光发光是通过激发光激发荧光基团到达高能量状态,而后产生发射光。同生物发光在动物体内的穿透性相似,红光的穿透性在小动物体内比蓝绿光的穿透性要好得多,随着发光信号在体内深度的增加,波长越接近900nm的光线穿透能力越强,同时可消减背景噪音的干扰,近红外荧光为观测生理指标的最佳选择。在实验条件允许的条件下,应尽量选择发射波长较长的荧光蛋白或染料。

 

(二)活体动物荧光成像技术应用领域

1.肿瘤学

活体荧光成像技术能够无创伤定量检测小鼠的皮下瘤模型。相对于生物发光成像技术,活体荧光成像技术检测时间较快,只需要不到1s的时间,同时不需要注射底物,节约了检测成本。但是需要选择近红外荧光检测深部组织,目前此波段的荧光蛋白种类有限,精确定量较难。

(1)GFP标记的肺肿瘤模型(H-460-GFP)

H-460-GFP是一个绿色荧光蛋白表达细胞系,它起源于H-460肺小细胞肺癌,稳定转染了绿色荧光蛋白基因,并由SV-40启动子起始基因的表达。

通过H-460-GFP皮下肿瘤模型,建立小鼠肺癌的实验模型,可用来进行有关抗癌药物的筛选(图11-3)。可用于测量皮下肿瘤的生长和监测对潜在化学治疗药物的反应。

   

201291311782.jpg

11-3  左图是接种后1w荧光成像,右图是3w荧光成像(上海市肿瘤研究所供图)

 

(2)量子点标记细胞系

通过量子点可以标记肿瘤细胞,用量子点Qtracker® 705对MDA-MB-231乳腺癌细胞进行标记,皮下接种后动态观察其生长以及变化(图11-4)。激发光波长625nm ,散射光波长680nm。

 

201291311770.jpg

11-4 量子点标记肿瘤细胞不同时间荧光成像

 

2.抗体

分子探针的一端联有能够和生物体内特异靶点结合的分子结构(如肽类、酶的底物、配体等),另一端则是荧光染料。通过Cy5.5标记的抗体的体内代谢实验,可见肝、肾等处的分布(图11-5)。

   

201291311125.jpg 

11-5   Cy5.5标记的抗体的体内代谢实验(上海市肿瘤研究所供图)


互联网
仪器推荐
文章推荐