分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

活体动物体内光学成像(九)

2020.7.27
头像

王辉

致力于为分析测试行业奉献终身

关于活体成像系统常见问题解答


1. 关于小动物活体成像技术的起源与发展
活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商最新研发的背部薄化、背照射冷CCD,配合密闭性非常好的暗箱,使得直接监控活体生物体内的细胞活动和基因行为成为现实。科学家借此可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。所以说该技术是伴随着背部薄化、背照射冷CCD的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体动物体内光学成像技术具有越来越高的灵敏度,对肿瘤微小转移灶的检测灵敏度极高。在该技术诞生后的5、6年间,科学家借此取得了大量的科学成果,发表了几百篇文献资料,大部分都是应用以背部薄化、背照射冷CCD为核心部件的成像系统而得出的。活体动物光学成像技术的应用史,就是生物学家应用背部薄化、背照射冷CCD进行生物微弱发光检测的应用史。没有背部薄化、背照射冷CCD,就没有活体动物光学成像技术的诞生和发展。背部薄化、背照射冷CCD之所以促进活体动物光学成像技术的发展,主要是由于超低温的CCD芯片,CCD镜头温度越低,噪音越小,信噪比越好,灵敏度越高。正是由于背部薄化、背照射冷CCD对动物微弱发光的极高的灵敏度,才使得该项技术得到广泛的应用。由于卓越的背照射冷CCD技术的问世,科学家利用此技术进行了大量的研究,才使近年来产生了大量的高水平的应用活体成像技术进行肿瘤学、基因治疗、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。


2. 科学家在活体成像技术诞生之初是如何进行CCD的选择的?
诚实的讲,斯坦福的科学家在这方面进行了很多探索和尝试,他们在2000年-2001年仪器研发之初写过很多文献,探讨这些问题。是关于仪器的设计的。那时科学发展的必经之路。我觉得那些探索和尝试是有说服力的,是科学的态度和精神,抓住了问题的本质。在该技术诞生之初,科学家就对此进行的探索,见如下文献:In vivo imaging of light-emitting probes Journal of Biomedical Optics 6(4), 432–440 October 2001 文中详细描述了活体动物光学成像技术对CCD的特殊要求,见下面的文字:
20061221a.jpg
文中详细描述了应用在活体成像实验中的CCD的性能要求:背部薄化、背照射冷CCD。并指出了背部薄化、背照射冷CCD是用于活体成像技术的最合适的CCD的选择。活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。背照射、背部薄化冷CCD是经过探索得出的结论,灵敏度是最本质的需要,有过很多比较和尝试,最后才形成共识。

互联网
文章推荐