分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

转基因技术的发展及其在转基因动植物的应用(一)

2020.7.20
头像

王辉

致力于为分析测试行业奉献终身

转基因技术的发展

自从人类学会蓄养动物、耕作植物以来,我们的祖先就从未停止过对物种的遗传改良。过去的几千年里改良物种的主要方式:针对自然环境造成的突变或无意的人为因素所产生的优良基因和重组个体进行选育和利用,从而通过随机和自然的积累优化基因。然而这种极低几率且无人类控制性的被动模式大大阻碍了农业的发展,迫切地需要一门新兴科学。自遗传学创立后改观了这一境遇,动植物育种采用人工杂交的方法进行优良基因的重组和外源基因的导入,从而实现遗传改良。

因此,转基因技术与传统技术在本质上都是通过获得优良基因进行遗传改良。但在基因转移的范围和效率上,转基因技术与传统育种技术区别于两点:首先,传统技术一般只能在生物种内个体间实现基因的转移,而转基因技术所转移的基因则不受生物体间亲缘关系的限制;第二,传统的杂交和选择技术一般是在生物个体水平上进行,操作对象是整个基因组,所转移的是大量的基因,不可能准确地定位于某个基因进行操作和选择,对后代的表型预见性较差。而转基因技术所操作和转移的是经过明确定义的基因,功能清楚,可准确预测后代。故转基因技术是对传统技术的发展和补充,两者的结合可以极大地提高动植物品种改良的效率。

在转基因发展的过程中,从早期单纯进行科研研究拓展到目前研究和应用齐头并进,生物学科与其他领域的交叉有着不可忽略的重要作用,如生物物理产生的显微镜技术,以及日益发展的电穿孔技术,极大地促进了科研走向应用。

在当今转基因领域中电穿孔技术的应用范围最广,早在1982年Neumann.E将外源DNA在电场条件下导入小鼠真核细胞[1],从而实现了基因重组和外源基因的功能研究。随之这一技术得到了广泛的运用,如细菌、酵母、植物和动物细胞的体外应用如Simon, J. R[2];以及器官植入、皮肤损伤修复的电化学疗法、疫苗的注射等体内体外临床应用,如S.Tollefsen, et al[3];小分子或大分子物质功能性研究;研制转基因动物、转基因植物新品种等,本文下文就将特别介绍转基因动植物的应用。

电穿孔技术主要包括电转染电融合:电转染是利用脉冲电场将外源DNA导入细胞中,当细胞处于高压电场时,瞬时电脉冲可将细胞膜穿孔产生可逆性孔径,从而DNA进入细胞与染色体整合;电融合是利用高强度的电场脉冲,引起相邻的细胞融合。

电穿孔技术的简单原理与应用如下图:

2009101312340.jpg
图1:电穿孔前后细胞质膜的变化示意图

2009101312784.jpg
图2:电穿孔原理和应用示意图


转基因动物
1981年,第一次成功地将外源基因导入动物胚胎,创立了转基因动物技术。1982年获得转基因小鼠,转入大鼠的生长激素基因,使小鼠体重为正常个体的二倍,因而被称为“超级小鼠”,这些开拓了转基因克隆动物–无性生殖技术。1997年英国I. Wilmut等,用绵羊乳腺细胞的细胞核移植到去细胞核的卵细胞中,成功得到了克隆羊“多莉”,证实了高等哺乳动物也可以突破有性生殖繁殖后代。

核显微注射法则是动物转基因技术中早期最常用的方法。它是在显微镜下将外源基因注射到受精卵细胞的原核内,注射的外源基因与胚胎基因组融合,然后进行体外培养,最后移植到受体母畜子宫内发育,这样分娩的动物体内的每一个细胞都含有新的DNA片段。然而这种方法的缺点是效率较低、位置效应(外源基因插入位点随机性)造成的表达结果的不确定性、动物利用率低等,在反刍动物还存在着繁殖周期长,有较强的时间限制、需要大量的供体和受体动物等特点。


互联网
文章推荐