分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

关于嵌入式闪存的一些错误观念(二)

2020.10.12
头像

王辉

致力于为分析测试行业奉献终身

嵌入式闪存支持EEPROM功能

传统的EEPROM架构支持字节写操作,因而常常被需要频繁更新数据的应用程序所用。通常,嵌入式闪存是按一定规则排列的一组存储单元,又称为扇区。扇区需要在写入新数据前完全擦除。幸运的是,我们可以使用SRAM缓冲器在整个嵌入式闪存区的一小部分上模拟EEPROM功能,既简单并且对用户透明。

这经常让人们误认为嵌入式闪存不能满足EEPROM耐用性要求。然而,EEPROM的耐擦写次数通常可达到100万次。过去,大多数MCU和智能卡应用所要求的耐擦写次数均低于10万次,但近来诸如SIM卡等应用的要求越发严格,耐擦写次数需达到50万次(典型值)。为了支持这一要求,我们通过第三代SuperFlash技术(ESF3)提供比前两代技术更好的耐擦写特性,并且大量的数据显示,第三代技术能够满足这些应用所要求的50万次耐擦写次数。

blob.png

图2 第3代嵌入式SuperFlash(ESF3)

嵌入式闪存是可以扩展的

十年以前,纷纷流传嵌入式闪存无法突破90nm以下节点,理由是存储单元扩展面临诸多困难和挑战。可如今嵌入式闪存已发展到28nm级,因此证明上述看法是错误的。现在面临的挑战是将嵌入式闪存迈入FinFet工艺时代。不过,诸如Samsung和GLOBALFOUNDRIES等代工厂正专注于平面22 nm技术节点(甚至更小)的FDSOI技术,可能会使嵌入式闪存的使用寿命比28nm节点更长。

对于指令代码应用,不可以用OTP代替嵌入式闪存

一些集成电路需要使用片上指令代码进行一次性编程,该编程可以在使用现场进行,也可以在交付客户之前在晶圆级测试或封装完成后在最终测试时完成。虽然OTP解决方案似乎足以符合非易失性存储器的一次性编程要求,但实际操作时它存在一些严重的用户体验和可靠性问题。首先,大型存储块的OTP编程需要使用多个冗余位和相关的冗余管理电路,存在难以解决的效率低下难题。额外增加的复杂性也令芯片设计人员伤透脑筋。其次,嵌入式闪存工艺专门针对长期数据可靠性而进行了优化,与之相比,采用OTP解决方案的大型存储块提供的数据保留时间通常没有任何优势。原因是对大型OTP存储块进行编程有一些不确定性,产生的尾位会对精确读取造成影响。

嵌入式闪存是可扩展的,并且可用于众代工厂的先进技术节点

通常情况下,嵌入式闪存比领先技术节点晚两代,因为其主要由非易失性存储器解决方案需求推动,而诸如14nm Finfet等高级节点是由高端SoC、高性能计算和图形处理器推动,这些不需要片上嵌入式闪存。最近,嵌入式闪存在高级逻辑节点的可用性方面已经迈出了一大步。2012年,纯代工厂只能提供90 nm级嵌入式闪存。但在过去四年间,在许多领先的代工厂(见图1)中以及在高端汽车和IoT解决方案的研发过程中,嵌入式闪存达到了28nm级。这种飞跃式的发展主要是由汽车应用推动的,汽车应用要求针对高级技术节点使用汽车MCU。

汽车、移动和IoT应用正在推动单片机和其他闪存器件发展,闪存市场已经增长到220亿美元左右。为了在这一细分市场上占据一席之地,许多代工厂已经启用了嵌入式闪存平台或者正在积极努力之中,包括GLOBALFOUNDRIES、HHGrace、LFoundry、SilTerra、TSMC、UMC、Vanguard XFAB以及XMC,将来还有更多成员加入。

blob.png

图3 技术节点和相关代工厂

所有无晶圆厂的IDM和许多只有小规模晶圆厂的IDM都在与纯代工厂进行合作。不过,IDM都有自己的制造设备,可以根据产品集和可用技术,选择自己生产或外包给纯代工厂。许多一流IDM选择了在其自己的代工厂部署SST的嵌入式闪存技术,目的是为了能够定制一系列技术节点的差异化产品。


互联网
文章推荐