分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

浅析原子吸收光度计的优缺点

2020.11.24
头像

王辉

致力于为分析测试行业奉献终身

  原子吸收光度计在环境分析中的应用是非常广泛的,也是国内外环境分析中zui常使用的仪器之一。Hg、Cd、Pb、Cr( VI )、As是我国*批立法颁布的需重点控制的环境污染物,这类污染物具有强毒性、生物浓缩倍数大等特点,在人体内有长期积蓄会产生一定的毒害作用。

  目前,已从常规的火焰原子吸收方法(FAAS)体系,发展到以石墨炉原子吸收方法(GFAAS)为主的方法体系,前者主要用于污水、土壤消解液和固体废物浸出液的重金属分析,也可用于K、Na、Ca、Mg、Fe等常量金属元素分析,而石墨炉法多用于地表水、饮用水源地表水及大气颗粒物中重金属元素的监测分析。随着我国原子吸收应用技术的发展,原子吸收光度计不仅用于无机金属化合物的监测分析,亦可用于NO-3、NO-2、S2-等阴离子的监测分析。

  不论使用空气-C2H2火焰还是N2O- C2H2火焰,FAAS法只能测定水溶液中的金属元素,而在环境科学研究领域中要分析测试的对象除水和污水以外,往往还有土壤、固体废物、烟尘和大气颗粒物、粮食、蔬菜及毛发、血液、人体组织等。这类环境试样都要通过消解处理才能成为可供 FAAS甚至 GFAAS 测定的样品。

  原子吸收光度计的优缺点

  1、选择性强

  这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。而对原子吸收光度计分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光度计分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。

  2、灵敏度高

  原子吸收光度计分析法是目前灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100ml。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10ml即可。

  3、分析范围广

  发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。在原子吸收光度计分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光度计法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。

  4、抗干扰能力强

  第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光度计分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。

  5、精密度高

  火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。若采用自动进样技术,则可改善测定的精密度。火焰法:RSD<1%,石墨炉3~5%。

  原子吸收光度计有以下一些不足:

  原则上讲,不能多元素同时分析。测定元素不同,必须更换光源灯,这是它的不便之处。原子吸收光度计法测定难熔元素的灵敏度还不怎么令人满意。在可以进行测定的七十多个元素中,比较常用的仅三十多个。当采用将试样溶液喷雾到火焰的方法实现原子化时,会产生一些变化因素,因此精密度比分光光度法差。现在还不能测定共振线处于真空紫外区域的元素,如磷、硫等。标准工作曲线的线性范围窄(一般在一个数量级范围),这给实际分析工作带来不便。对于某些基体复杂的样品分析,尚存某些干扰问题需要解决。在高背景低含量样品测定任务中,精密度下降。如何进一步提高灵敏度和降低干扰,仍是当前和今后原子吸收光度计分析工作者研究的重要课题。

  原子吸收光度计应用

  1、在理论研究方面的应用

  原子吸收可作为物理或物理化学的一种实验手段,对物质的一些基本性能进行测定和研究,另外也可研究金属元素在不同化合物中的不同形态。

  2、在元素分析方面的应用

  原子吸收光谱法凭借其本身的特点,现已广泛的应用于工业、农业、生化制药、地质、冶金、食品检验和环保等领域。该法已成为金属元素分析的有力手段之一。而且在许多领域已作为标准分析方法,如化学工业中的水泥分析、玻璃分析、石油分析、电镀液分析、食盐电解液中杂质分析、煤灰分析及聚合物中无机元素分析;农业中的植物分析、肥料分析、饲料分析;生化和药物学中的体液成分分析、内脏及试样分析、药物分析;冶金中的钢铁分析、合金分析;地球化学中的水质分析、大气污染物分析、土壤分析、岩石矿物分析;食品中微量元素分析。

  3、在有机物分析方面的应用

  使用原子吸收光谱仪利用间接法可以测定多种有机物,如8-羟基喹啉(Cu)、醇类(Cr)、酯类(Fe)、氨基酸(Cu)、维生素C(Ni)、含卤素的有机物(Ag)等多种有机物,都可通过与相应的金属元素之间的化学计量反应而间接测定。

  原子吸收光度计是一种无机成分分析仪器,利用原子吸收光谱仪测出原子吸收光谱,此法即为原子吸收光谱法,它是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,能广泛地应用于环保、医药卫生、冶金、地质、石油化工等部门的微量和痕量分析。


互联网
文章推荐