分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

细胞迁移的的四个步骤

2022.7.18
头像

zhaoqisun

致力于为分析测试行业奉献终身

 当人们观察角膜细胞的迁移时,可看到细胞体外形的改变。这可以类比于人的步行过程,首先是确定前进方向,然后是重复一系列动作循环,即一只脚先往前踏出,并且在地上踏实,而鞋纹则有防止向后滑的功能,再是上身重心前移,最后是后脚提起并向前脚靠拢,完成一个循环。而其中的每个步骤,都受到一个精巧的调节网络控制,以保证原料和能量的合理利用和细胞迁移的有效进行。

  细胞前端突出

  这是上面说到的步行过程中前脚伸出。细胞首先会伸出极状足,极状足有两种,一是板状伪足(lamellipodia),另一则是丝状伪足(filopodia),这两种伪足可同时出现在一个细胞膜的某一局部。但构成两者的微丝蛋白结合蛋白有异,板状伪足因为有Arp2/3的帮助,微丝会形成网状,而在丝状伪足里面,微丝成直线状。所以在外形上板状伪足显得扁平,丝状伪足则是薄薄的针状突出。但两者的形成机制究竟是否有别,则仍未有定论。极状足的内部,是因为个体分子的不断加入而变长的肌动蛋白纤维(英文:Actinfilament,即微丝),这个过程被称为多聚化(Polymerisation))。而且这些变长的微丝之间会靠一些蛋白,如细丝蛋白的连接而成网成束,加强其韧性。

  分布在细胞前端的肌动蛋白多聚化,可以被看作是一种动力来源,不断推细胞膜向前突出。这种被称为“基于肌动蛋白多聚化机制”(actin polymerization–based mechanism)可以理解为不断多聚变长的微丝在内部不断地“顶”着细胞膜往前,一如精子的顶体反应。其过程如下:肌动蛋白单体被不断添加到微丝近胞膜一端,而Arp2/3则为微丝网络不断添加侧枝,促成新的侧枝以70°生成展开,让更多的单体添加到网络上。蛋白质如细丝蛋白(Filamin)则负责巩固这种结构。前纤维蛋白将从多聚体脱离下来的ADP肌动蛋白转换成ATP肌动蛋白,使之从新具备多聚化的能力。而弹性布朗棘轮模型(elastic Brownian ratchet model)则进一步解释突出是如何被不断变长的微丝“鞭”出来的。根据电子显微镜观察得出的结果,微丝的尾部是抵着细胞膜的,肌动蛋白单体无法被加载。但是热能会促使微丝弯曲,这时单体就有机会加入到多聚物的末尾。微丝和一根塑料棒有着相当的刚性,弯曲所保存的势能会帮助微丝变会原来伸直的状态。数量众多的微丝这样“鞭”打细胞膜,会提供足够的动力促使细胞膜突出。

  微丝的核化除了Arp2/3复合体外,还需要形成素(formins)中的mDia1和mDia2的协助。而Arp2/3会受到WAVE/Scar, WASP(欧德里综合症蛋白)和N-WASP蛋白的调控。这些蛋白如果出现突变或者功能缺损,患者很有可能会得到欧德里综合症(Wiskott-Aldrich syndrome,或译威斯科特·阿德里希综合症)。WAVE/Scar是Abi,NCK连接蛋白(NCK-associated protein,简称Nap125),特异Rac1连接蛋白(Specifically Rac 1-associated proteins, 简称Sra-1)和HSPC-300多聚体的一部分。这个复合体受小GTP蛋白Rac的调控,Rac会促进Abi, Nap125和Sra-1与WAVE分离,使之激活。WASP和N-WASP则是受到Cdc42调控。这些蛋白质又会受磷酸化过程或磷酸肌醇,WIP和TOCA等分子的控制。

  与Arp2/3促成侧枝不一样,形成素会结合到微丝的末端,使之线形延长。形成素也受到小GTP蛋白调控,mDia1受RhoA,而mDia2则受Cdc42调节。它们还需要与前纤维蛋白相互作用才能达到促进微丝多聚化的目的。前纤维蛋白的行为模式可能与抑制微丝末端“帽子”的形成有关,这种蛋白也为Ena/VASP介导的微丝末端多聚化所需。前纤维蛋白和胸腺嘧素4都是G肌动蛋白结合蛋白,而胸腺嘧素4是前纤维蛋白的拮抗剂。但是前纤维蛋白能够与不同的肌动蛋白结合,胸腺嘧素4则不能。所以后者被视为是维持胞质G肌动蛋白水平的重要一员,使之形成G肌动蛋白库,G肌动蛋白可以从中靠前纤维蛋白的帮助进行多聚化。

  突出与底质的粘着

  该步对应于人的前脚固定。不论细胞的前端是如何向前伸出的,但是伸出后的极状足需要在底质上固定。在显微镜下可观察到肌动蛋白束在细胞前端内部往落点上固定,并发展为一块具有一定结构的斑,被称为“粘着斑”。粘着提供摩擦力,能使细胞巩固向前迈出的步伐而不致向后“滑”。粘着斑的聚合和解聚受到细胞外物质的影响,同时也影响着细胞的行进。

  粘着斑由整合蛋白(Integrin)和负在上面的适配器蛋白(Adaptor protein),再加上纤维结合蛋白(Fibronectin)共同构成。整合蛋白是细胞膜上主要的细胞外基质受体,在一系列细胞生理过程中起作用[20]。根据一些实验的结果,带有缺陷的整合蛋白无法使细胞留驻在底质上,但不影响细胞突出的形成。适配器蛋白可看作是应力纤维连接整合蛋白的接口。而整合蛋白则是跨膜蛋白,最终负责直接与外界底质接触的是纤维结合蛋白。

  不难想象,细胞前端不断生成粘着斑,后端不断解聚粘着斑以供前端使用。但其实前端的粘着斑一样会不断解聚,解聚所得的蛋白质最终由蛋白酶分解,分解产物会被运输到前端的其他位点被再投入使用,称作“周转”(Turnover)。所以前端粘着斑有着两种命运,或是解聚,或是被巩固增大。在活体里面的细胞的粘着斑相比起那些体外培养的,在二维平面上移行的细胞的要小。新生的和早建的粘着斑在结构上差异不大,但成分有不同之处。

踝蛋白(Talin)连接整合素和肌动蛋白。有很多报道称,除了肌动蛋白,还有其他信号分子会连接到整合素上,调节整合素和细胞骨架的活性。

例如,斑联蛋白(zyxin)会连接到α-辅肌动蛋白(α-actinin)并调节邻近微丝末端上的Ena/VASP活性。

虽然粘着斑的初始化(也被称为“核化”)和调控机制是目前细胞生物学研究的热点之一,但人们还是未知道,究竟什么机制决定一块粘着斑是被巩固还是被解聚。可以肯定的是,结合在细胞骨架上蛋白质的共价修饰(covalent modification)形式之一——酪氨酸残基磷酸化是粘着斑形成过程中的重要现象。

另外,Rho-GTP酶也被肯定是其中不可忽视的一员。但它本身又会被与粘着斑相关的信号分子所调节,如复合体粘着斑激酶(Focal adhesion kinase,简称FAK),Src,桩蛋白(paxillin),Crk,CAS,PAK和GIT。其中,FAK,桩蛋白还有张力蛋白(tensin)这三种蛋白,都是目前该调节通路“主角”的候选人。其作用方式,现以粘着斑激酶为例以作说明:在细胞粘着斑形成处,整合蛋白会吸引一批蛋白质到自己周围,形成一复合体,以便启动其对其它蛋白质的调控过程。粘着斑激酶是粘着斑形成早期“被招募者”之一,它控制着一大批下游反应,会合诸如适配器蛋白生长因子受体结合蛋白2(Grb2,全称:growth factor receptor-bound protein 2)和磷脂酰肌醇-3激酶(PI3K)的p85亚基起作用。而研究表明,整合蛋白可以通过这条FAK信号通路作用,增加细胞的移动能力,求生(Survival)能力,甚至是癌细胞的转移能力。FAK也因此成为了癌症研究的一个对象[21][22]。过去被认为与发炎反应及细胞凋亡有关的c-Jun氨基末端激酶(JNK;c-Jun amino-terminal kinase),也参与了细胞迁移,它能透过将桩蛋白(paxillin)磷酸化,进而影响粘著斑形成。

  值得一提的还有微管在周转过程中发挥的作用。20世纪70年代,瓦斯利夫(Vasiliev, J.M)和他的工作小组用噻氨酯哒唑处理了金鱼的成纤维细胞,细胞内的微管被破坏。这时细胞会失去极性。后来他们提出了微管在细胞迁移中的作用:“稳定住细胞边缘活动的和不活动的部分。”后来,科学家再发现,微管会伸展到细胞前进端早期形成的粘着斑处,所以他们认为微管能稳定细胞与底质的粘着。但是后来的发现是,微管对粘着起到的作用是负面的。微管会限制粘着斑的形成,并且会促进后者在细胞的其它部位被重新利用,后面这种现象被称为粘着斑的周转。等到研究技术允许作活细胞观察的时候,人们才终于认识到,微管与粘着斑的相互作用并非如先前那样认为的少,而是非常的频繁。科学家后来利用隐失波显微术(evanescent wave microscopy)观察得到的结果同样证实了这种观点的正确性。

  细胞体前移

  当细胞前端固定好之后,细胞的主体就可以前进了。但是这个主体推进的过程细节并不明了。现认为,细胞核和细胞器是被“系”在细胞内部纵横交错的细胞骨架上的,再通过II型肌球蛋白的不断运动,使得这些“货物”得以不断被往前拉。这种观点得到一些实验的证实。例如,科学家发现II型肌球蛋白会分布在细胞伪足和细胞主体的分界线上,这样的分布有利于肌球蛋白的“拉”行为。这个过程受到小Rho GTP酶Cdc42, Rac和RhoA的调控。

而这些蛋白相互之间却是拮抗的关系。RhoA 激活Rho-激酶(又名ROCK),后者在激活状态下会将肌球蛋白轻链磷酸酶(myosin light chain phosphatase,简称MLC磷酸酶。该酶为MLC去掉磷酸基团)磷酸化,就是使它失活了,导致细胞的收缩增强。Cdc42也是通过MRCK起到类似的作用。与它们相反的是,Rac会激活PAK,PAK能磷酸化MLC激酶,使之失活,后果是细胞收缩力减退,扩展受阻。但是PAK也能直接磷酸化MLC,增加细胞收缩能力。究竟是哪种作用占优,取决于PAK的空间分布和它的活性调节水平。PAK还会通过激活PIX/PAK复合体调节细胞极化,该复合体在由G蛋白偶联受体所引发的细胞迁移中会分布到细胞前端并发挥其作用。PAK还能通过癌蛋白18(stathmin)的磷酸化作用于微管,减少后者变动(catastrophe,即微管从延长状态转变为缩短状态这个过程)的机会。封闭微丝末端的封闭蛋白,如凝溶胶蛋白则主要靠磷酸肌醇调节。而切断微丝的蛋白:丝切蛋白则受到LIMK介导的磷酸化影响。而LIMK又会受到PAK介导的或是Rho-激酶介导的丝氨酸/苏氨酸磷酸化的调节。

  牵引尾部往前

  最后一步,类似于人步行时后脚往前收。细胞后端,或称为尾部与底质分离并被牵往前方。这个过程可能与应力纤维的收缩,或是简单的细胞弹性变形有关。值得注意的是,细胞后端是被“撕”(ripping)离底质的。就是说,细胞的尾部会在底质上留下一部分细胞膜残片。而尾部的粘着斑也会卸载,否则细胞收缩会撕开细胞。这个卸载的过程包括,粘着斑部件以胞吞作用的形式被内吞,然后会被发动蛋白承载并回收转运,这个过程有微管的参与。在肌球蛋白介导的胞体收缩过程中,RhoA和Rac通过Rho-激酶和PAK可以调节MLC的磷酸化,这也为尾部粘着斑解聚做出贡献。还有,尾部磷酸酶,如神经钙蛋白(calcineurin)的磷酸化作用或蛋白质被蛋白酶降解,如踝蛋白被钙蛋白酶(calpain)降解都会下调粘着斑与底质的亲和力。钙离子可能在此过程中会调节神经钙蛋白和钙蛋白酶。


互联网
仪器推荐
文章推荐