分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

微阵列在材料科学研究中的应用

2023.2.06
头像

zhaoqisun

致力于为分析测试行业奉献终身

微阵列在材料科学研究中的国内主要发展:

(1)阵列构筑技术

基于氧化铝模板,通过气相法、电沉积、原位溶胶-凝胶等技术,构筑了各种纳米线、纳米管、异质结纳米线等的有序排列的阵列体系。发展了催化诱导CVD技术,在孔内预先置入金属纳米颗粒作为催化剂,通过CVD过程沿孔内生长出单晶Si,GaN,等纳米线阵列体系;发展了基于模板的电沉积技术,成功地获得了一系列铁磁-非铁磁合金纳米线阵列、Bi异性结纳米线阵列;进而发展了脉冲电沉积方法,获得了金属单晶纳米线阵列;发展了“两步法”构筑氧化物纳米线阵列的技术,即:基于模板的电沉积与随后的氧化处理技术, 获得了一系列金属氧化物纳米线有序阵列体系(ZnO等);提出基于模板孔通道内原位溶胶-凝胶合成纳米管阵列的策略,借助孔壁与孔内胶体颗粒的带电特性,可使胶体颗粒沿孔壁沉积出纳米管有序阵列,我们已成功地获得高度均匀的有序排列的Eu2O3纳米管阵列体系。

(2)纳米结构光偏振器件

纳米阵列中纳米线的定向排列,可对入射光的垂直和平行振动分量具有选择吸收。以此为出发点,系统地研究了金属纳米线阵列的光偏振性能,发现了在1000至2200nm的近红外波段具有很好的光偏振特性,并制成微型光偏振器件,从而使得这种纳米线阵列体系可用于1.06um的光通讯微型器件以及军事目标的识别。同时,还成功地设计完成了国内第一台纳米线栅光偏振测量装置,系列结果已在Adv. Funct. Mater等刊物上发表了7篇学术论文。国际上尚未见类似的报道。

(3) 阵列的奇异特性

在锐钛相TiO2纳米线有序阵列中观察到室温条件下三个新的荧光带,峰位分别为425nm, 465nm和525nm。揭示三个荧光带产生的来自于自束缚激子、氧空位和F+中心。利用电沉积法成功地在氧化铝模板中制备了不同直径 Bi 纳米线阵列。发现20nm 的Bi纳米线电阻曲线在50 K出现最大值,50nm 的Bi纳米线电阻曲线在258K出现最小值。且当T>50K时, 20nm 和50nm 样品的电阻曲线是负温度依赖,而70nm样品是正温度依赖,这表明在50—70nm附近Bi纳米线可能发生了半导体—半金属转变。磁电阻研究结果表明,在100K, 50nm样品的巨磁电阻达到45%,在4.2K附近, 20nm直径 Bi 纳米线阵列的磁电阻出现异常。


互联网
仪器推荐
文章推荐