分析测试百科网

搜索

分析测试百科网 > 行业资讯 > 微信文章

天津大学丨微通道内三角形障碍物对气液传质的强化及机理分析

FlowLab智造商
2023.3.01

文章信息

Mass transfer intensification and mechanism analysis of gas–liquid two-phase flow in the microchannel embedding triangular obstacles

Xuanyu Nie (聂璇宇), Chunying Zhu (朱春英), Taotao Fu (付涛涛), Youguang Ma (马友光)

Volume 51, November 2022, Pages 100108

https://doi.org/10.1016/j.cjche.2021.09.016


f403ad5e6c245495919f59342009b12e.png

识别查看全文

Chinese Journal of Chemical Engineering



研究背景

近年来,微化工技术广泛应用于医药、材料、能源、环境等领域,具有良好的发展前景和应用价值。气液两相流动与传质作为微反应器设计和优化的基础,成为当前的研究热点。微反应器中流体流动的雷诺数较低,传质主要依靠分子扩散,但对流或湍流下的传质比分子扩散更有效。目前,增强气液两相间传质的主要途径是诱导湍流,包括主动强化和被动强化。主动强化需要能量驱动装置,而被动强化通过改变通道结构达到强化目的。相比之下,被动强化手段可以避免引入外部场源造成的系统不稳定。大量研究表明,在微通道中嵌入障碍物是一种有效的被动强化手段。本文针对微通道内嵌入不同的三角形障碍物增强气液两相传质的特性及机理进行了研究。



成果展示

本文通过在直通道内交错设置三角形挡板以提高微通道内传质性能,考察了障碍物结构(宽度、间距、形状)和气液两相流量对流型、压力降、体积传质系数、增强因子和能效的影响。Micro-PIV的结果表明,由于边界层与壁面分离,障碍物结构后方会形成漩涡。流体在涡区的强烈碰撞和混合,导致流动边界层变薄,促进了气液两相间的传质。对称构型以及适当增加障碍物宽度,减小障碍物间距有利于两相间传质强化。但障碍物微通道在强化传质的同时也增加了通道内的压降。随着气相流量的增加,能耗相应增加,相同的能耗下对称三角形障碍物通道(IT微通道)的增强效果最好。对称三角形障碍物通道内的增强因子最高可达2.1,且压降增幅在22%以内。



图文导读

液体流过障碍物结构后,通道渐宽,液体流动速度减慢。在此之后的某一时刻,边界层内液体的动能全部耗尽,流速降至零,形成驻点。此时,靠近壁面的液体在压力和惯性效应的作用下发生强烈的扰动,导致边界层与壁面分离,形成漩涡,如图1(a-d)所示。在该涡流区内,流体速度较小,流动方向较为紊乱,液相不断冲击壁面,导致边界层厚度降低。此外,障碍物结构加快了流体的流速,液相表面更新速率加快,液膜与液弹间混合增强,液膜不易饱和。同时,气泡受到三角形障碍物的挤压,表面变形,比表面积增大。这三方面共同促进了相间传质。湍动能强度的计算表明由于ET2具有最高的湍流强度和最大的高湍流强度区面积,因而传质效果最优(图2)。


5d3c2cfd657f85db114341a9bc985c69.jpg

图1  不同三角形障碍物下微通道内的速度场


054dc457a0b0e37314addf8ccc50825e.jpg

图2  障碍物结构对传质的影响 

(a)体积传质系数 (b)增强因子


障碍物微通道强化传质同时也增加了通道内的压力降(图3),原因主要有四方面:障碍物结构本身带来的局部压力损失;流体与壁面的摩擦压力损失变大;边界层分离导致漩涡的形成,造成能量消耗、压力降升高;气泡流经障碍物时,经历挤压、变形、破裂,造成了压力降的增大。此外,在较低的气相流量下,ET1、ET2和IT的效率相当,RT的效率相对较低。随着气相流量的增加,能耗相应增加,相同的能耗下IT增强效果最好(图4)。IT增强因子最高可达2.1,且压力降增幅相对于直通道在22%以内。


482d521aa3b7e352c3524a56c6e4bb23.jpg

图3  微通道内压降变化

(a) 障碍物构型的影响;(b) ET2通道内气液流量的影响


76b66799c212c3087e575ef78e7b37d3.jpg

图4  液侧传质系数随能耗变化



作者及团队介绍

马友光团队长期从事传质与分离工程、化工过程强化、微化工技术、多相流与传质等方向的理论和应用研究。针对微反应内气泡/液滴的生成、破裂及聚并行为进行了深入研究,探索了气泡/液滴行为的调控机制。此外对气-液两相间的传质机理进行了广泛研究,并建立了微观非线性传质模型。


END


75a410675f8f935424a13ba2b7974f04.gif
宝藏推荐

流动化微反应技术通过化工装备的微(小)型化来实现化工过程的安全、高效和绿色。这一全新的发展理念,为化学工程学科的基础研究提出了全新的方向,也为精细化工、制药等产业发展提供了新的模式,流动化微反应技术已成为化工学科的前沿方向和化工、制药等产业发展的制高点之一。


基于流动化学迅猛发展起来的智能化和自动化合成化学设备及微反应技术正让传统实验室工作模式和生产方式发生着翻天覆地的变化,引领合成化学向小型化、智能化和连续化方向发展,经过多年的研发及应用,欧世盛流动化微反应解决方案成为现阶段科研工作者寻求创新的技术突破口。


流动化微反应设备是以微结构元件为核心,在微米或毫米受限空间内进行化工反应和分离过程的技术,它通过减小体系的分散尺度强化物质混合与传递,提高过程可控性和效率,以“数量放大”为基本准则,进行微设备的集成和放大,将实验室成果快速运用于工业过程,实现大规模生产。


欧世盛已有大量的研究和应用案例充分展示了流动化微反应技术是化学品绿色、安全和智能制造的关键技术,是化工过程强化的重要手段之一

END

流动化学微反应欧世盛整体解决方案

95a7fd2301e35d39a5a716ccadfb7deb.jpg
全自动微反应连续加氢
8fdbfe130e4ec0fde2a6887e1333f1ad.png
解决方案设备构成反应类型
加料系统

高压输液泵

硝基还原、氢化去硫反应

……

气路控制

单元

压氢气发生器

烯烃和炔烃的还原反

……

温度控制

单元

多路温度

在线控制模块

N-、O-去苄基化反应

……

反应单元

全自动

微反应加氢仪

脱卤反应

……

压力控制   

单元

全自动

在线背压调节器


羰基化反应

……

氢气气源

单元

高压氢气发生器

腈类化合物还原反应

……

样品采集

单元

多功能

在线样品采集器

吡啶芳香环衍生物还原反应

……

流动化学

理系统

H-Flow管理软件

亚胺还原反应

……

                 双通道催化剂快速评价装置


点击设备名称,了解详情




微反应器能解决哪些问题
液液均相反应器

反应类型

硝化反应、磺化反应、锂化反应、格式反应、取代反应、高温关环反应……


液液非均相反应器

反应类型

中和反应、氧化反应……


气液反应器

反应类型

氧化反应(O2)、钯催化的Heck 羰基化反应(CO)CO2气体参与的反应……


光化学反应器

反应类型

芳环或杂环的三氟甲基化反应、烯烃加成反应、自由基反应……



 拓展功能
设 备 方 案 


气液分离单元



在线检测单元

....……

高压气液分离器


S-FLOW-S30 液液分离仪

在线UV-Vis检测器

....……
点击设备名称,了解详情

欧世盛科技提供完整的微反应流动化学实验室整体解决方案

作为一家微反应流动化学整体解决方案供应商。核心设计团队经过近20年的技术积累,依据微反应实验流程中的使用习惯和痛点需求做了深入研究,经过多年的研发投入,根据合成的分类和流动化学的特点,已将微反应合成常见的液液合成、气液固合成等相关设备商用上市,

其中,液液合成设备所需的供料模块、反应模块、控制监控模块、检测模块、收集模块和管理软件工作站模块等六个模块几十种成熟产品供选。



785c6355d3e342eebdb0924426ecbd8e.jpg
中国首家
FLOWLAB智造商

网址 | www.osskj.com

电话 | 010—82439598




发布需求
作者
头像
仪器推荐
文章推荐