19.100 无损检测 标准查询与下载



共找到 2159 条与 无损检测 相关的标准,共 144

Non-destructive testing instrument ultrasonic detection ultrasonic diffraction sound time detector

ICS
19.100
CCS
N77
发布
2020-04-16
实施
2021-01-01

Non-destructive testing instrument far field eddy current detector

ICS
19.100
CCS
N78
发布
2020-04-16
实施
2021-01-01

Non-destructive testing instrument eddy current conductivity detector

ICS
19.100
CCS
N78
发布
2020-04-16
实施
2021-01-01

Non-destructive testing instrument laser ultrasonic visual detector

ICS
19.100
CCS
N77
发布
2020-04-16
实施
2021-01-01

Standard Test Methods for Nondestructive Evaluation of the Stiffness of Wood and Wood-Based Materials Using Transverse Vibration or Stress Wave Propagation

ICS
19.100
CCS
发布
2020-04-15
实施

ISO 16526-2:2011 specifies a constancy check of a X-ray system where mainly the X-ray voltage is checked and also the tube current and the constitution of the target which can be changing due to ageing of the tube. The thick filter method is based on a measurement of the dose rate behind a defined thick filter using defined distances between the X-ray tube, the filter and the measuring device. This method is very sensitive to changes of the voltage, but it does not provide an absolute value for the X-ray tube voltage. Therefore, a reference value is needed and, it is recommended to find this reference, for example, within the acceptance test of the system. The thick filter method is a rather simple technique and may be applied by the operator of an X-ray system to perform regularly a constancy check of the system. The method can also be applied for consistency checks after changing components which may affect the X-ray tube voltage. This method can be applied for all types of X-ray systems, i. e. for constant potential, half wave and impulse wave generators with a tube current larger than 1 mA.

Non-destructive testing - Measurement and evaluation of the X-ray tube voltage - Part 2: Constancy check by the thick filter method (ISO 16526-2:2011)

ICS
19.100
CCS
发布
2020-03-04
实施
2020-06-30

ISO 16526-1:2011 specifies a method for the direct and absolute measurement of the average high voltage of constant potential (DC) X-ray systems on the secondary side of the high voltage generator. The intention is to check the correspondence with the indicated high voltage value on the control unit of the X-ray system. This method is applied to assure a reproducible operation of X-ray systems because the voltage influences particularly the penetration of materials and the contrast of X-ray images and also the requirements concerning the radiation protection.

Non-destructive testing - Measurement and evaluation of the X-ray tube voltage - Part 1: Voltage divider method (ISO 16526-1:2011)

ICS
19.100
CCS
发布
2020-03-04
实施
2020-06-30

ISO 16526-3:2011 specifies the test method for a non-invasive measurement of X-ray tube voltages using the energy spectrum of X-rays (spectrometric method). It covers the voltage range from 10 kV to 500 kV. The intention is to check the correspondence of the actual voltage with the indicated value on the control panel of the X-ray unit. It is intended to measure the maximum energy only and not the complete X-ray spectrum. The procedure is applicable for tank type and constant potential X-ray units.

Non-destructive testing - Measurement and evaluation of the X-ray tube voltage - Part 3: Spectrometric method (ISO 16526-3:2011)

ICS
19.100
CCS
发布
2020-03-04
实施
2020-06-30

Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters

ICS
19.100
CCS
发布
2020-02-01
实施

1.1 This practice covers a procedure for determining the impedance of absolute eddy-current probes (bridge-type, air or ferrite core, wire wound, shielded, or unshielded) used for finding material defects in electrically conducting material. This practice is intended to establish a uniform methodology to measure the impedance of eddy-current probes prior to receipt of these probes by the purchaser or the specifier. 1.2 Limitations—This practice does not address the characterization or measurement of the impedance of differential, a-c coupled, or transmit/receive types of probes. This practice does not address the use of magnetic materials in examination probes. This practice shall not be used as a basis for selection of the best probe for a particular application or as a means by which to calibrate or standardize a probe for a specific examination. This practice does not address differences in the impedance values that can be obtained when the probe and material are in relative motion, as in a rotating probe, since the procedure described here requires the probe and material to be stationary. 1.3 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Practice for Determining the Impedance of Absolute Eddy-Current Probes

ICS
19.100
CCS
发布
2020-01-15
实施

Technical specifications for ultrasonic phased array testing of welded joints of buried polyethylene pipes for gas use Part 1: General requirements

ICS
19.100
CCS
N 78
发布
2020-01-03
实施
2020-02-03

Technical specification for ultrasonic phased array inspection of welded joints of buried polyethylene pipelines for gas use Part 3: Inspection of hot-melt joints

ICS
19.100
CCS
N 78
发布
2020-01-03
实施
2020-02-03

Technical specification for ultrasonic phased array testing of welded joints of buried polyethylene pipelines for gas use Part 2: Testing of electrofusion joints

ICS
19.100
CCS
N 78
发布
2020-01-03
实施
2020-02-03

Non-destructive testing — Ultrasonic testing — Time-of-flight diffraction technique as a method for detection and sizing of discontinuities

ICS
19.100
CCS
发布
2019-12-31
实施

Non-destructive testing — Ultrasonic testing — Time-of-flight diffraction technique as a method for detection and sizing of discontinuities

ICS
19.100
CCS
发布
2019-12-31
实施

This document describes the test method for determining residual stresses in polycrystalline materials by neutron diffraction. It is applicable to both homogeneous and inhomogeneous materials including those containing distinct phases. The principles of the neutron diffraction technique are outlined. Suggestions are provided on: — the selection of appropriate diffracting lattice planes on which measurements should be made for different categories of materials, — the specimen directions in which the measurements should be performed, and — the volume of material examined in relation to the material grain size and the envisaged stress state. Procedures are described for accurately positioning and aligning test pieces in a neutron beam and for precisely defining the volume of material sampled for the individual measurements. The precautions needed for calibrating neutron diffraction instruments are described. Techniques for obtaining a stress-free reference are presented. The methods of making individual measurements by neutron diffraction are described in detail. Procedures for analysing the results and for determining their statistical relevance are presented. Advice is provided on how to determine reliable estimates of residual stresses from the strain data and on how to estimate the uncertainty in the results.

Non-destructive testing — Standard test method for determining residual stresses by neutron diffraction

ICS
19.100
CCS
发布
2019-12-06
实施

1.1 This practice covers guidelines for utilizing EMAT techniques for detecting material discontinuities that are primarily open to the surface (for example, cracks, seams, laps, cold shuts, laminations, through leaks, lack of fusion). This technique can also be sensitive to flaws and discontinuities that are not surface-breaking, provided their proximity to the surface is less than or equal to the Rayleigh wave length. 1.2 This practice covers procedures for the non-contact coupling of surface waves into a material via electromagnetic fields. 1.3 The procedures of this practice are applicable to any material in which acoustic waves can be introduced electromagnetically. This includes any material that is either electrically conductive or ferromagnetic, or both. 1.4 This practice is intended to provide examination capabilities for in-process, final, and maintenance applications. 1.5 This practice does not provide standards for the evaluation of derived indications. Interpretation, classification, and ultimate evaluation of indications, albeit necessary, are beyond the scope of this practice. Separate specifications or agreement will be necessary to define the type, size, location, and direction of indications considered acceptable or nonacceptable. 1.6 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Practice for Ultrasonic Surface Testing Using Electromagnetic Acoustic Transducer (EMAT) Techniques

ICS
19.100
CCS
发布
2019-12-01
实施

本标准规定了立式金属常压容器在线检验的方法与要求、结果评价及记录和报告。

Specification for on line inspection of vertical metal atmospheric pressure vessel

ICS
19.100
CCS
M732
发布
2019-11-25
实施
2019-11-27

电磁超声脉冲回波式测厚方法 1 范围 本标准规定了在温度不超过650℃条件下使用非接触电磁超声脉冲回波法测量材料厚度的方法准则。 本标准适用于超声波能以一恒定速度在内部传播并能得到和分辨背面反射的导电或铁磁性材料的厚度测量。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 9445 无损检测 人员资格鉴定与认证 GB/T 11259 超声波检验用钢对比试块的制作与校验方法 GB/T 11344 无损检测 接触式超声脉冲回波法测厚方法 GB/T 12604.1 无损检测 术语 超声检测 GB/T 20935.1 金属材料电磁超声检验方法 第1部分 电磁超声换能器指南JB/T 7522 无损检测 材料超声速度测量方法 3 术语和定义 GB/T12604.1确立的以及下列术语和定义适合于本标准。 3.1 蝶形线圈 由两个绕在长形轨道上的EMAT线圈,其并排放置,并进行连接,使中间段导线上的电流仅向一个方向流动。 3.2 电磁超声换能器(EMAT) 一种在磁场作用下将电能转换为声能的电磁装置。 4 方法概述 4.1 采用电磁超声脉冲回波法测量厚度时,厚度值(T)是声速与超声波在材料中传播往返时间一半的乘积。 式中: T—厚度; V—声速; t—材料中超声传播往返时间。 4.2 采用电磁超声脉冲回波仪器测量超声脉冲通过被检件的传播时间。 4.3 被检材料声速是材料物理特性的函数。通常假定对给定的材料种类材料声速是一个常数,其近似值能从JB/T7522-2004的表B.1中查到,也可以根据试验测定。钢、铝或其他金属的不同合金在声速上可能存在差异,从而使读数超出其精度要求,选择校准试块材料时必须注意材料声学特性的不同。 4.4 不同仪器定时电路采用不同的转换电路。常规方法是所谓时间—模拟转换电路。在该电路中,仪器测量的时间转换成成比例的直流电压,然后将直流电压施加给读出装置。另一种方法采用适当的回波指示调制或选通超高频率振荡器,输出或直接用适当的数字显示,或转换成电压用其他方式显示。 4.5 高温材料厚度测量可以通过专门设计的高温补偿装置测量。在温度升高时,需要对厚度读数进行校正。经常使用的经验法则如下:温度升高时,对钢壁厚测得的读数是高的(即过厚),每55℃增加大约1%厚度。因此,如果仪器在一块相同材料且温度为20℃上校好,则在表面温度为460℃材料上测得的读数,应减少8%的厚度值。这种校正方法是对许多类型钢材测量取的平均值,其他校正方法必须对其他材料进行经验测定。 5 意义和用途 5.1 本标准规定材料厚度的间接测量方法,材料温度不超过650℃。 5.2 电磁超声脉冲回波测厚广泛使用于各类材料的基本形状和产品以及精加工部件的厚度测量,也可测量由腐蚀和侵蚀引起的运行中设备壁厚的减薄。 6设备 6.1仪器 6.1.1 使用EMAT测量厚度的仪器应都具有A扫描和直接厚度读数显示。仪器的显示器(A扫描显示、表头或数显)必须能方便调节并显示出使用范围内的厚度值。该功能的控制在不同的仪器上可以有不同的名称。 6.1.2 带A扫描显示的检测仪以A扫描显示方式显示时间—幅度信号。通过读出校零初始脉冲和第一次回波(背面反射)之间的距离测量厚度,或根据A扫描显示校准时基线上多次背面反射回波之间距离测量厚度,A扫描显示时基线应能调整到要求的厚度增量。 6.1.3 A扫描显示可以检查电子测量的有效性,它可显示出测量情况的变化,例如内部不连续、回波强度变化等。 6.1.4 可具有热电偶输入,以获取材料的温度,然后用于温度校正算法。 6.1.5 自动厚度测量系统,可能有多种显示器,包括直接读取的、彩色编码映射、线扫描、点映射等。 6.2探头 最常见的超声波频率(通常为1.5MHz、2.5MHz、5MHz、7.5MHz)和传感器尺寸(6到50mm)。不同传感器的特性(尺寸、中心频率、带宽)应由传感器制造商提供。 6.3校准试快 要求校准试块有与被检件材料相同的声速,并且还要求在被测厚度范围内有精确的厚度测量值。一般要求厚度是整数,而不是零散值。其中一个试块的厚度值应接近测量范围最大厚度,而另一个试块的厚度值应接近测量范围最小厚度。 7仪器的标定和调整 7.1 在检测之前应使用6.3中所述的适当的参考块对EMAT系统进行标准化。如果仪器程序能够存储不同的合金速度,则可以加载特定的程序,并执行验证步骤而不是标准化程序。如果验证步骤表明仪器读数超出公差范围,则必须在使用前进行标准化程序操作。 7.2 参考标准试块应具有与被检查材料类似的声学特性。 7.3 与常规超声波应用一样,如果参考标准中的参考反射体(例如背壁)的振幅与样品的振幅不匹配,则应完成衰减校正。 7.4 参考标准应在任何系统或操作员变更后重新检查,以保持标准化。 7.5 如果在扫描模式下操作EMAT,应验证扫描速率是最佳的,以确保超声分辨率足以满足规定的速度。 7.6 将EMAT置于较厚试块上,调整仪器的“声速设定”,使电磁超声测厚仪显示读数接近已知值。 7.7 将EMAT置于较薄试块上,调整仪器的“零位校正”,使电磁超声测厚仪显示读数接近已知值。 7.8 反复进行7.6和7.7,直到厚度量程的高低两端得到正确读数为止。 7.9 若已知材料声速,则可预先设定声速值,然后测量仪器附带的薄钢试块,调节“零位校正”,使仪器显示出不同材料换算后的显示值。 7.10 应监测背反射的振幅,以确保有足够的信号强度可用于精确的厚度测量,并确保保持足够的电磁耦合。 7.11 背反射闸门应在检查前进行验证,此后定期进行验证,以确保保持适当的闸门位置和长度,以确保测量的准确性。 8方法要求 8.1 磁性材料(螺旋线圈—径向极化剪切水平波或蝶形线圈—线性极化剪切水平波) 8.1.1 用于测量磁性元件中的材料厚度。从0.5mm至101.6mm,精度为12um。较厚的组件可以使用定制设计的EMAT来测量,这些EMAT可以在较低的频率下工作,并且具有较大的线圈,这取决于材料特性,如导电性和晶粒尺寸。 8.1.2 检查部件的所有表面应相对无氧化皮、污垢、毛边、熔渣、飞溅物或其他可能干扰检查结果或损坏EMAT探头的情况。 8.1.3 为了进行厚度测量或扫描,将EMAT探头放在待检查物体上。EMAT线圈中产生大电流尖峰脉冲或多周期纯音脉冲,在外加磁场的作用下,产生水平超声剪切波。 8.1.4 剪切水平波反射到后表面界面,然后由同一EMAT线圈检测。 8.1.5 来自接收器EMAT线圈的电压通过低噪声前置放大器放大,然后发送到信号处理电子设备的接收器部分,在那里进一步放大,过滤后,发送到波形数字化仪表。测量数字化信号的到达时间和振幅,并用计算机软件计算壁厚。 8.2非磁性材料(蝶形线圈—线性极化纵波) 8.2.1 用于在0.5mm至101.6mm范围内的非磁性部件中测量材料厚度,精度为12um。较厚的组件可以使用定制设计的EMAT来测量,这些单元可以在较低的频率下工作,并且具有较大的线圈,这取决于材料特性,如导电性和晶粒尺寸。 8.2.2 检查部件的所有表面应相对无氧化皮、污垢、毛边、熔渣、飞溅物或其他可能干扰检查结果或损坏EMAT探头的条件。 8.2.3 为了进行厚度测量或扫描,将EMAT探头放在待检查物体上,大电流尖峰脉冲或多周期短脉冲,在外加磁场的作用下,产生一个纵向超声波。 8.2.4 纵波在背界面反射,然后由EMAT检测。 8.2.5 来自接收器EMAT线圈的电压通过低噪声前置放大器放大,并发送至信号处理电子设备的接收器部分,在那里进一步放大,过滤并发送至波形数字化仪器。测量数字化信号的到达时间和振幅,并用计算机软件计算壁厚。该过程在固定时间间隔内重复扫描模式。 9 报告 在检测记录和报告中应包括以下内容: 9.1 检测方法 9.1.1 仪器的型号; 9.1.2 标准试块尺寸和材料类型; 9.1.3 EMAT的详细说明,包括尺寸、频率和类型; 9.1.4 扫描方法; 9.2 结果 9.2.1 检测的最大厚度值和最小厚度值 9.2.2 检测位置 9.3 检测人员 9.3.1检测人员的情况、资格等级

Electromagnetic Ultrasonic Pulse Echo Thickness Measuring Method

ICS
19.100
CCS
M745
发布
2019-11-07
实施
2019-11-08

This document gives requirements and recommendations for non-destructive testing (NDT) training syllabuses, with the intention of harmonizing and maintaining the general standard of training of NDT personnel for industrial needs. It also establishes the minimum requirements for effective structured training of NDT personnel to ensure eligibility for qualification examinations leading to third-party certification according to recognized standards. In addition to non-destructive testing in general, its guidelines for syllabuses cover acoustic emission testing, eddy current testing, leak testing, magnetic testing, penetrant testing, radiographic testing, ultrasonic testing, visual testing, thermographic testing, and strain gauge testing. ISO/TS 25108 gives requirements and recommendations for NDT training organizations.

Non-destructive testing - NDT training syllabuses (ISO/TS 25107:2019)

ICS
19.100
CCS
发布
2019-10-16
实施
2020-01-31



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号