分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

Nature子刊: CRISPR/Cas系统的多功能“RNA剪刀”

2018.2.09
头像

184****5725

致力于为分析测试行业奉献终身

  天然的CRISPR/Cas系统广泛存在于细菌和古细菌,它是微生物的免疫系统,帮助细菌抵御病毒入侵。成簇的规律间隔的短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats,CRISPR)-衍生RNAs(crRNAs)对CRISPR/Cas系统来说至关重要。

  在此之前生物通曾报道过张锋团队发现的一种靶向和降解RNA的RNA引导酶(Cas13a),并证明它能特异性地降低哺乳动物细胞内源性RNA和报告RNA水平,比RNA干扰(RNAi)效率更高。张锋《Nature》发布CRISPR重要成果:靶向哺乳动物细胞RNA

  如今,Hess和Juliane Behler等人在蓝细菌(cyanobacteria)CRISPR/Cas系统中发现宿主内源核糖核酸酶E(endoribonuclease E,RNase E)同样具备RNA剪刀功能。

  Cas6和Cas5d是许多第一类CRISPR/Cas系统的RNA内切酶。在某些第二类系统中,成熟和效应功能还需结合一个单酶或成熟过程中通过体内RNase III 和反式激活CRISPR RNAs(tracrRNAs)的结合活动。

185064_201802091436311.jpg

(第二类CRISPR/Cas系统工作示意图)

  蓝细菌(Synechocystis sp. PCC 6803)携带三个独立的CRISPR/Cas系统,Cas6型酶在其中两个系统中发挥作用,而第三个被归为亚型III-B变体(III-Bv)则缺乏cas6同系物,研究人员发现,该系统需要通过活化RNase E,crRNAs才能成熟。

  体内过表达RNase E会导致crRNAs的积累减少,表明RNase E是CRISPR复合体形成的限制因素。RNase E识别取决于CRISPR重复茎环,剪切位点的碱基替换会引发副产品出现,符合两步识别和切割机制。结果暗示出这个非常保守的看家酶具备容纳新底物的适应性,显示了该CRISPR/Cas系统在特定遗传环境下都能行驶功能的强可塑性。

  研究人员发现这种能在CRISPR/Cas系统中起作用的酶还非常普遍,不仅光合细菌中有,病原菌和植物叶绿体中也有,它可能是所有生物调节基因表达的重要因子。CRISPR/Cas系统和宿主细胞机制的相互作用可能比过去人们想象的更强,如果好好利用,这类系统的应用潜力将非常广阔。

生物通
文章推荐