分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

J型高速逆流色谱仪演进及未来(二)

2020.6.24
头像

王辉

致力于为分析测试行业奉献终身

2.1.2 双分离柱

将单分离柱配重块换成分离柱组成双分离柱系统,这样就解决了平衡问题,也扩展了机器容量,但是需要更多的管路来进行连接,这种机型理论最大β值为1,在实际应用中,因为分离柱加工缠绕以及机械结构稳定性等设计考虑,β值不可能实际到达1。

其结构示意图如下所示:

index_l_02_02.jpg

2.1.3 三分离柱

三分离柱同双分离柱相比,等同于增加了1个柱容积,连接管路也相应增加,理论最大β值可达到0.866,其结构侧面示意图如下所示:

index_l_02_03.jpg

保持公转半径不变的情况下,自转半径会随着柱子数量增加而减小,柱体积也会随之减小,理论最大β值也会相应减少,四分离柱仅为0.707,已经不能满足最低β值需求(一般试验需要β值至少达到0.8以上)。

综上所述,因为每增加一个分离柱,自转半径随之降低,导致柱容量也成持续减少趋势,所以从合理的机械设计角度,为了满足实验所需基本β值需求,三分离柱即为在高速逆流色谱仪设计时所能采用的最高分离柱数。

2.2 管路解绕

由于高速逆流色谱仪是一种连续流的分离系统,管路从头至尾贯穿始终,而其又需进行高速旋转运动,所以要采取措施解决管路缠绕及在长期使用后容易出现的管路破损和断裂等问题,这就是解绕技术。

2.2.1 解绕轴

传统解绕方法是采用PTFE软管加解绕轴进行连接的,基本原理如下所示:

index_l_02_04.jpg

如图,箭头指示为分离柱旋转方向,其搭配一个转速相同但与其反向旋转的解绕轴来完成红色管路的解绕。在运行过程中,由于转速相同但转向相反,所以红色管路不会因为转动而缠绕折损,最后解绕轴与中心轴组成最后一个解绕管路,将管路通向机器外部。

 

因为柱子有出口和进口两个管路处需要实现解绕,即可以将他们组成一个管路从柱子的一头完成解绕,又可以从柱子两头分别解绕,然后从相应的中心轴的两端通向机器外部。

2.2.2 旋转密封

旋转密封采用旋转密封接头连接分离柱和外部管路,其结构图如下所示:

index_l_02_05.jpg

采用旋转密封的分离柱在高速旋转时,旋转密封接头固定不动,连接柱子进口或出口的管路和外部管路,组成一套解绕系统。采用此系统的机器连接管路相对固定其接头静止不动,无需解绕轴,无任何损伤风险,柱子之间直接用连接管相连并通向机器外部。

解绕管采用PTFE软管虽然能够经受各种化学腐蚀,但是耐磨、抗拉等性能差,在机械转动作用下,很容易渗漏甚至断裂,旋转密封技术有效解决长期以来高速逆流色谱仪的管路渗漏和断裂问题,进而也为提高高速逆流色谱仪的分离性能创造了空间。


互联网
仪器推荐
文章推荐