分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

纳米材料的粒度分析(三)

2020.8.04
头像

王辉

致力于为分析测试行业奉献终身

①    射法(static light scattering)在静态光散射粒度分析法中,当颗粒粒度大光波波长时,克用夫朗和费衍射测量前向小角区域的散射光强度分布来确定颗粒粒度。当粒子尺寸与光波波长相近时,要用米散射理论进行修正,并利用光谱分析法。基于这两种理论原理的激光粒度分析已经应用于生产实际中。以菲涅耳衍射理论为指导实现颗粒粒度测量的原理是在近场(相对于夫朗和费衍射)探测衍射光的相关参数,并计算出粒度分布,该方法具有理论上的可行性,对于实现激光粒度分析仪的小型化是一个很好的方案。较为成熟的激光衍射粒度分析技术是根据夫朗和费衍射理论而开发的。1976年,提出了基于夫朗和费衍射理论的激光颗粒测量方法,其原理是激光通过被测颗粒将出现夫朗和费衍射,不同粒径的颗粒产生的衍射随角度的分布而不同,根据激光通过颗粒后的衍射能量分布及其响应的衍射可以计算出颗粒样品的粒径分布。随后,一些国家相继研制了基于这种原理的激光粒度仪。根据夫朗和费衍射理论设计的激光粒度仪的测量范围为3~1000ųm。

②    光子相关光谱法(photon correlation spectroscopy)动态光散射法(dynamic light scattering)当颗粒粒度小于光波波长时,由瑞利散射理论,散射光相对强度的角分布与粒子大小无关,不能够通过对散射光强度的空间分布(即上述的静态散射法)来确定颗粒粒度,动态光散射正好弥补了在这一时,会散射出一定频移的散射光,散射光在空间某点形成干涉,该点光强的时间相关函数的衰减与颗粒粒度大小有一一对应的关系。通过检测散射光的光强随时间变化,并进行相关运算可以得出颗粒粒度大小。尽管如此,动态光散射获得的是颗粒的平均粒径,难以得出粒径分布参数。动态光散射法适于检测亚微米级颗粒,测量范围为1nm~5ųm。

(4)电超声粒度分析法  点超声分析法是出现的粒度分析方法,粒度测量范围为5 ųm~100 ųm。它的分析原理较为复杂,简单地说,当声波在样品内部传导时,仪器能在一个宽范围超声波频率内分析声波的衰减值,通过测得的声波衰减谱,可以计算书衰减值与粒度的关系。分析中需要颗粒和液体的密度、液体的黏度、颗粒的质量分数等参数,对乳液或胶体中的柔性粒子,还需要颗粒的热膨胀参数(包括粒径、ξ电位势等),不需要稀释,避免了激光粒度分析法不能分析高浓度分散体系粒度的缺陷,且精度高,粒度分析范围更宽。

(5)其他颗粒粒度测量方法

① 基于颗粒布朗运动的粒度测定方法  布朗运动是悬浮于介质(气体或液体)中微小颗粒与介质分子相互作用产生连不断的无规则运动。尽管布朗运动看起来复杂而无规律,但是,科学家们对其的深入研究还是揭示了布朗运动的某些统计规律,即在一定条件下和在一定时间内,颗粒所移动的平均位移均具有一定的数值,并且平均位移的平方与颗粒径成反比。对基于颗粒布朗运动位移的中心轨迹法和基于颗粒布朗运动速度的光缝法已进行了可行性论证。基于颗粒布朗运动的粒度测定方法为测量超细微粒的粒径分布开拓了新的技术领域。

②电泳法(electrophoresis)在电场力作用下,带电颗粒在悬浮体系中定向迁移,颗粒迁移率的大小与颗粒粒度有关,通过测量其迁移率可以计算颗粒粒度。电泳法可以测量小于1 ųm的颗粒粒径,但只能获得平均粒度,难以进行粒度分布的测量。

③费氏法(fisher method)费氏法属于稳流(层流)状态下的气体头国法。在恒定压力下,空气先透过被测颗粒 堆积体,然后通过可调节的针形阀流向大气。根据空气偷过颗粒堆积体时所产生的阻力和流量可以求得颗粒的比表面积及平均粒度。费氏法是一种相对测量方法,册的的粒度称为费氏平均粒度,不能地反映颗粒的真实粒度,也不能和其他粒度测量方法所得结果进行比较,不能地反映颗粒的真实粒度,也不能和其他粒度测量方法所得的结果进行比较,仅用来控制工艺过程和产品质量。典型产品有美国的费歇尔亚筛级粉末测定仪。

④质谱法(mass spectrometry)颗粒束质谱仪主要用语测量气溶胶中为颗粒的粒度。目前,国外已有几个科研小组从事质谱法测定颗粒质量和粒度研究,并且研究方法和技术路线各不相同。但是,其基本原理都是测定颗粒动能和所带电荷的碧绿mU2/(2Ze)、颗粒速度U和电荷数Z,从而获得颗粒质量m,结合颗粒形状和密度则可求得颗粒粒度。气溶胶样品首先在入口处形成颗粒束,再经差动加压系统进入高真空区,在高真空区中用告诉电子流将颗粒束离子化,然后用静电能量分子仪检测粒子化颗粒动能和电荷之比,用速度中微笑颗粒的质量和粒度分布。质谱法测定颗粒的粒度范围一般为1~50nm。

4、粒度分析的新进展

随着纳米材料在高心技术产业、国防、医药等领域的广泛应用,颗粒测量技术将向测量下限低、测量范围广、测量准确度和度高、重现性好等方向发展。因此,对颗粒测量技术的要求也越来越高。综观各种颗粒测量方法和技术,为适应颗粒粒度分析的更高要求,光散射法、基于颗粒布朗运动的测量方法和质谱法等颗粒粒度分析手段将更加完善并得到更广泛的应用。为了适合纳米科技发展的需要,方法逐步成为粒度分析的重要内容。目前,适合纳米材料粒度分析的方法主要是激光动态光散射粒度分析法和光子相关光谱分析法,其测量颗粒zui小粒径可以达到20nm和1nm。

5、纳米材料粒度分析

对于纳米材料体系的粒度分析,首先要分清是对颗粒的一次粒度还是二次粒度进行分析。由于纳米材料颗粒间的强自吸特性,纳米颗粒的团聚体是不可避免的,单分散体系非常少见,两者差异很大。

 一次粒度的分析主要采用电镜的直观观测,根据需要和样品的粒度范围,可依次采用扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜(STM)、原子力显微镜(AFM)观测,直观得到单个颗粒的原始粒径及形貌。由于电镜法是对局部地区域的观测,所以,在进行粒度分布分析时,需要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到的依次粒度分析结果一般很难代表实际样品颗粒的分布状态,对一些在强电子束轰击下不稳定甚至分解的微纳颗粒、制样困难的生物颗粒,微乳等样品则很难得准确的结果。因此,依次粒度检测结果通常作为其他分析方法结果的比照。

纳米材料颗粒体系二次粒度统计分析方法,按原理分较先进的三种典型方法是:高速离心沉降法、激光粒度分析法和电超声粒度分析法。集中激光粒度分析法按其分析粒度范围不同,又划分为光衍射法和动态光散射法。衍射法主要针对微米、亚微米级颗粒;散射法则主要针对纳米、亚微米级颗粒的粒度分析。电超声粒度分析方法是出现的粒度分析方法,主要针对高浓度体系的粒度分析。纳米材料粒度分析的特点是分析方法多,主要针对高浓度体系的粒度分析。纳米材料粒度分析的特点是分析方法多,获得的是等效粒径,相互之间不能横向比较。每种分析方法均具有一定的适用范围以及样品条件,应该根据实际情况选用合适的分析方法。

互联网
仪器推荐
文章推荐