分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

环境污染对水蚤、斑马鱼等水生动物的影响(二)

2021.3.01
头像

王辉

致力于为分析测试行业奉献终身

邻苯二甲酸酯(增塑剂)-斑马鱼-

邻苯二甲酸酯(PAEs)是一种常用的增塑剂,常存在于墙纸、化妆品、医疗设备、食品包装材料、服装等中,我国PAEs消耗量极大且逐年增加。由于PAEs化学上不与塑料结合,因此很容易被释放到水和土壤中,同时还存在于空气、室内灰尘等中,并通过呼吸、皮肤等方式进入人类和动物体内。目前一些地区的PAEs环境浓度已严重超过健康标准,可导致生殖问题、发育缺陷、胚胎畸形等问题,对环境和公众健康存在巨大危害。因此,对PAEs的负面影响及其相关毒理机制进行鉴定意义重大。

中国水产科学院等四家单位就对此进行了斑马鱼胚胎试验中邻苯二甲酸盐的脊髓效应评价研究并联合发表论文。斑马鱼胚胎的自发活动有助于水生生物寻找食物和躲避天敌,是水生生物行为毒性的重要衡量指标,论文对受增塑剂影响的斑马鱼胚胎的自发活动进行了行为研究,分析其平均速率、移动距离、活动时间等。DEHP、DBP等邻苯二甲酸盐是生活垃圾、垃圾渗滤液和沉积物中的PAEs的主要同源物。研究中,将2hpf(hours post-fertilization)的斑马鱼胚胎随机转移到24孔板后,分别暴露于0、50、250μg/L的DEHP、DBP中,处理6天后进行分析,以评估DEHP、DBP的毒性(Qian et al., 2020)。

结果表明,DBP和DEHP改变了斑马鱼幼虫在144 hpf时的自发活动。结合脊柱、体长等分析及转录水平分析的结果,推断斑马鱼自发活动的改变可能是由于脊柱和骨骼系统发育异常所致。综上所述,PAEs导致斑马鱼胚胎脊髓出生缺陷,导致脊髓发育基因的转录改变与行为异常。

image.png

蛋硒(饲料添加剂)-斑马鱼

尽管微量的硒是维持动物生理稳态所必需的,但是在饮食中轻微增加硒的摄入会引起生物富集和随之而来的毒性。

加拿大萨省大学毒理学中心的Thomas和Janz研究了过量蛋硒(Egg Se,在饮食的主要化学形态为硒蛋氨酸)对F1代成年斑马鱼游泳能力和代谢能力的持续影响。研究发现过量蛋硒(6.8 和12.7μg Se/g d.m.)会损伤其游泳能力,增加其耗氧和代谢率(下图)。进一步的基于蛋硒毒性阈值的物种敏感度分布研究揭示了斑马鱼是目前最为敏感的物种,因此是研究鱼类早期生活史阶段硒诱导毒性机制的绝佳实验室模型(Thomas and Janz, 2015)。

论文中斑马鱼游泳能力和代谢能力的测量使用了170mL的斑马鱼游泳呼吸测量系统,该系统可同步测量斑马鱼的临界游泳速度(Ucrit)和耗氧率/代谢率(SMR-标准代谢率、AMR-活动代谢率及F-AS,即AMR/SMR)。

image.png 

氧化铜纳米粒子(防污涂层)-亚马逊观赏鱼

氧化铜纳米粒子(nCuO)广泛应用于船的防污涂料并由此释放到环境,对水生生物具有潜在的毒害作用。

巴西国家亚马逊研究所的Braz-Mota等人测量了短鲷和霓虹灯鱼两种亚马逊观赏鱼的耗氧率,借以研究两种形态的铜——溶解态铜(Cu)和氧化铜纳米粒子(nCuO)对其影响。研究发现两种鱼的代谢应激具有种特异性:仅暴露于Cu的霓虹灯鱼耗氧率升高(nCuO未升高),而短鲷的两种处理未见明显变化。结合鳃渗透压调节生理、线粒体功能、氧化应激和形态学损伤等方面的数据,论文揭示了两种亚马逊鱼对两种形态的铜的不同代谢响应,而代谢响应的不同和两种鱼的生活史有关,意味着污染物不同的毒性作用机制与不同的渗透压调节策略有关(Braz-Mota et al., 2018)。

论文中代谢率/耗氧率(MO2)数据的采集使用了鱼类呼吸代谢测量系统。测试鱼放于70mL的玻璃呼吸室中,测量系统自动运行间歇、流通测量(automated intermittent flow respirometry),一个MO2数值的获取包括3个阶段:交换-等待-测量,每种处理的鱼分别持续采集了4小时。

image.png

污水-蓝腮太阳鱼

加拿大麦克马斯特大学(McMaster University)的Du等人测量了污水处理厂下游两处(50m和830m)的蓝腮太阳鱼的耗氧率。发现受污染区域蓝腮太阳鱼的标准代谢率相较于无污染的参照区域较高,即代谢成本升高。但代谢成本升高也伴随着氧气吸收、传递和利用等方面的生理补偿性调整,如鳃表面积扩大,血氧亲和力降低,离体肝线粒体氧化磷酸化能力增强等等(Du et al., 2018)。

论文使用了鱼类呼吸代谢测量系统测量了蓝腮太阳鱼的标准代谢率,并通过控制溶解氧规律递减,测定了临界氧气分压值(PO2),评估其缺氧耐力。

image.png

易科泰生态技术公司提供水生动物行为与能量代谢测量研究全面解决方案:

1)斑马鱼等鱼类行为与能量代谢测量研究

2)水蚤等水生无脊椎动物能量代谢与行为观测

3)易科泰生态健康研究中心依托Ecolab实验室,诚邀生物医学、中医药合作实验研究

参考文献

1.蒋正华. 生态健康与科学发展观[M]. 气象出版社, 2005.

2.方世南. 生态健康与人民健康同构关系中的生态政治哲学蕴涵研究[J].兰州学刊, 2020(3): 5-12.

3.孟紫强. 生态毒理学[M]. 高等教育出版社, 2009.

4.王乙震, 黄岁樑, 林超, et al. 化学品对水生动物的生态毒理学研究评述[J]. 海河水利, 2015, No.195(05):11-19.

5.M. Van Ginneken , R. Blust, L. Bervoets. The impact of temperature on metal mixture stress: Sublethal effffects on the freshwater isopod Asellus aquaticus[J]. Environmental Research ,2020,169:52-61

6.Marco, Parolini, Beatrice, et al. Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna.[J]. Environmental Pollution, 2018.

7.Nikinmaa M , Suominen E , Anttila K . Water-soluble fraction of crude oil affects variability and has transgenerational effects in Daphnia magna[J]. Aquatic Toxicology, 2019, 211:137-140.

8.Le Qian,Jia Liu,Zhipeng Lin,et al. Evaluation of the spinal effects of phthalates in a zebrafifish embryo assay [J]. Chemosphere,2020

9.Thomas J K, Janz D M. Developmental and persistent toxicities of maternally deposited selenomethionine in zebrafish (Danio rerio)[J]. Environmental science & technology, 2015, 49(16): 10182-10189.

10.Braz-Mota S, Campos D F, MacCormack T J, et al. Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi)[J]. Science of the Total Environment, 2018, 630: 1168-1180.

11.Du S N N, McCallum E S, Vaseghi-Shanjani M, et al. Metabolic costs of exposure to wastewater effluent lead to compensatory adjustments in respiratory physiology in bluegill sunfish[J]. Environmental science & technology, 2018, 52(2): 801-811.


互联网
仪器推荐
文章推荐