T/CASAS 020—2021
微纳米金属烧结体热导率试验方法 闪光法

Test method for thermal conductivity of micro-nano sintered compact: laser flash method


T/CASAS 020—2021 发布历史

金属互连材料在半导体封装工业中占据关键地位。传统封装采用焊料合金互连,但其析出的金属间化合物导致互连层服役温度较低且脆性较高。作为最适合于第三代半导体模块封装的界面连接技术之一,以微纳米银、微纳米铜为代表的新型微纳米金属烧结互连技术具有组分单一、低工艺温度、高服役温度的优点,而且芯片连接件的可靠性也可以得到大幅提升,特别是微纳米金属烧结件的烧结层往往具有低电阻率、高导热性能,这也使其更加适合未来的高温度、高功率密度应用。 热导率,又称导热系数或导热率,是表示材料热传导能力大小的物理量。作为材料的本征参数,热导率与材料大小和形状无直接关系,但受材料种类、制备工艺和微观结构的影响。对于微纳米金属烧结技术制备的连接层,采用不同材料和工艺,往往会造成微观下不同尺寸和数量的观孔隙结构,从而影响其导热性能。 目前微纳米金属烧结连接技术尚属起步推广阶段,热导率测试方法业内尚无统一标准。通过行业调研发现,产业链中原材料提供商、研发单位、终端用户等各个环节使用的热导率测试方案和样品规格差异较大,这给从业者技术交流、样品验证和质量评定制造了极大困难。因此,有必要根据实际需求,尽快制定统一的热导率性能测试标准,统一行业术语,从而方便业内对微纳米金属烧结样品的测试评定。 本文件采用了闪光法测定微纳米金属烧结体样品热扩散系数,再利用材料比热容、体积密度参数,由公式求出材料导热系数。闪光法测定热扩散系数测试方法由于其测定范围广、速度快、样品制备简易、适用多种气氛、操作简便等特点,目前已在各行各业广泛应用。材料比热容可通过查找参考资料获得,或使用比较法实验测得。材料体积密度可按照相关标准测定。  本文件相较于GB/T 22588-2008,对样品规格、测试条件、测试步骤进行了详细约束。 

T/CASAS 020—2021由中国团体标准 CN-TUANTI 发布于 2021-11-01,并于 2021-11-04 实施。

T/CASAS 020—2021在国际标准分类中归属于: 31.080.01 半导体器分立件综合。

T/CASAS 020—2021



标准号
T/CASAS 020—2021
发布日期
2021年11月01日
实施日期
2021年11月04日
废止日期
中国标准分类号
C397
国际标准分类号
31.080.01
发布单位
中国团体标准
适用范围
金属互连材料在半导体封装工业中占据关键地位。传统封装采用焊料合金互连,但其析出的金属间化合物导致互连层服役温度较低且脆性较高。作为最适合于第三代半导体模块封装的界面连接技术之一,以微纳米银、微纳米铜为代表的新型微纳米金属烧结互连技术具有组分单一、低工艺温度、高服役温度的优点,而且芯片连接件的可靠性也可以得到大幅提升,特别是微纳米金属烧结件的烧结层往往具有低电阻率、高导热性能,这也使其更加适合未来的高温度、高功率密度应用。 热导率,又称导热系数或导热率,是表示材料热传导能力大小的物理量。作为材料的本征参数,热导率与材料大小和形状无直接关系,但受材料种类、制备工艺和微观结构的影响。对于微纳米金属烧结技术制备的连接层,采用不同材料和工艺,往往会造成微观下不同尺寸和数量的观孔隙结构,从而影响其导热性能。 目前微纳米金属烧结连接技术尚属起步推广阶段,热导率测试方法业内尚无统一标准。通过行业调研发现,产业链中原材料提供商、研发单位、终端用户等各个环节使用的热导率测试方案和样品规格差异较大,这给从业者技术交流、样品验证和质量评定制造了极大困难。因此,有必要根据实际需求,尽快制定统一的热导率性能测试标准,统一行业术语,从而方便业内对微纳米金属烧结样品的测试评定。 本文件采用了闪光法测定微纳米金属烧结体样品热扩散系数,再利用材料比热容、体积密度参数,由公式求出材料导热系数。闪光法测定热扩散系数测试方法由于其测定范围广、速度快、样品制备简易、适用多种气氛、操作简便等特点,目前已在各行各业广泛应用。材料比热容可通过查找参考资料获得,或使用比较法实验测得。材料体积密度可按照相关标准测定。  本文件相较于GB/T 22588-2008,对样品规格、测试条件、测试步骤进行了详细约束。 




Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号