10. Guidance on the analysis of light elements with Z < 11 is also given. NOTE With care, mass fractions as low as 0,1 % are measurable when there is no peak overlap and the relevant characteristic line is strongly excited. This International Standard applies principally to quantitative analyses on a flat polished specimen surface. The basic procedures are also applicable to the analysis of specimens that do not have a polished surface but additional uncertainty components will be introduced. There is no accepted method for accurate quantitative EDS analysis of light elements. However, several EDS methods do exist. These are the following. a) Measuring peak areas and comparing intensities in the same way as for heavier elements. For the reasons explained in Annex D, the uncertainty and inaccuracy associated with the results for light elements will be greater than for the heavier elements. b) Where the light element is known to be combined stoichiometrically with heavier elements (Z > 10) in the specimen, its concentration can be determined by summing the appropriate proportions of concentrations of the other elements. This is often used for the analysis of oxygen in silicate mineral specimens. c) Calculation of concentration by difference where the light element percentage is 100% minus the percentage sum of the analysed elements. This method is only possible with good beam-current stability and a separate measurement of at least one reference specimen and it requires very accurate analysis of the other elements in the specimen. Annex D summarises the problems of light element analysis, additional to those that exist for quantitative analysis of the heavier elements. If both EDS and wavelength spectrometry (WDS) are available, then WDS can be used to overcome the problems of peak overlap that occur with EDS at low energies. However, many of the other issues are common to both techniques." >

ISO 22309-2006
微电子束分析.用能量散射光谱仪(EDS)进行定量分析

Microbeam analysis - Quantitative analysis using energy-dispersive spectrometry (EDS)


ISO 22309-2006 中,可能用到以下仪器设备

 

T6系列紫外可见分光光度计

T6系列紫外可见分光光度计

北京普析通用仪器有限责任公司

 

食品安全现场快速检测仪(可见分光光度计)

食品安全现场快速检测仪(可见分光光度计)

北京普析通用仪器有限责任公司

 

T10系列双光束紫外可见分光光度计

T10系列双光束紫外可见分光光度计

北京普析通用仪器有限责任公司

 

T9系列双光束紫外可见分光光度计

T9系列双光束紫外可见分光光度计

北京普析通用仪器有限责任公司

 

T9+系列双光束紫外可见分光光度计

T9+系列双光束紫外可见分光光度计

北京普析通用仪器有限责任公司

 

UV5 分光光度计

UV5 分光光度计

梅特勒-托利多中国(Mettler-Toledo)

 

UV7 分光光度计

UV7 分光光度计

梅特勒-托利多中国(Mettler-Toledo)

 

双光束紫外可见分光光度计

双光束紫外可见分光光度计

岛津企业管理(中国)有限公司/岛津(香港)有限公司

 

T600/T700系列紫外可见分光光度计

T600/T700系列紫外可见分光光度计

北京普析通用仪器有限责任公司

 

UV Power 紫外可见分光光度计

UV Power 紫外可见分光光度计

北京莱伯泰科仪器股份有限公司

 

哈希DREL1900 便携分析实验室

哈希DREL1900 便携分析实验室

美国哈希公司(HACH)

 

Dynamica DNAmaster微量核酸蛋白分析仪

Dynamica DNAmaster微量核酸蛋白分析仪

天美仪拓实验室设备(上海)有限公司

 

UV2800紫外可见分光光度计

UV2800紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

双光束紫外可见分光光度计

双光束紫外可见分光光度计

海能未来技术集团股份有限公司

 

海能 i9 双光束紫外可见分光光度计

海能 i9 双光束紫外可见分光光度计

海能未来技术集团股份有限公司

 

S22/S22PC可见分光光度计

S22/S22PC可见分光光度计

上海棱光技术有限公司

 

722S可见分光光度计

722S可见分光光度计

上海棱光技术有限公司

 

UV1902双光束紫外可见分光光度计

UV1902双光束紫外可见分光光度计

上海棱光技术有限公司

 

722SP可见分光光度计

722SP可见分光光度计

上海棱光技术有限公司

 

UV2900 紫外可见分光光度计

UV2900 紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

UV2400紫外可见分光光度计

UV2400紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

752型紫外可见分光光度计

752型紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

UV1600紫外可见分光光度计

UV1600紫外可见分光光度计

浙江福立分析仪器股份有限公司

 

UV1900紫外可见分光光度计

UV1900紫外可见分光光度计

浙江福立分析仪器股份有限公司

 

UV1800紫外可见分光光度计

UV1800紫外可见分光光度计

浙江福立分析仪器股份有限公司

 

 UV11II系列紫外可见分光光度计

UV11II系列紫外可见分光光度计

天美仪拓实验室设备(上海)有限公司

 

天美UV1000紫外可见分光光度计

天美UV1000紫外可见分光光度计

天美仪拓实验室设备(上海)有限公司

 

超微量光谱仪

超微量光谱仪

上海舜宇恒平科学仪器有限公司

 

756PC紫外可见分光光度计

756PC紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

754紫外可见分光光度计

754紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

723PC可见分光光度计(自动波长)

723PC可见分光光度计(自动波长)

上海舜宇恒平科学仪器有限公司

 

【海洋光学】光谱仪HR4000CG

【海洋光学】光谱仪HR4000CG

海洋光学亚洲公司

 

722系列可见分光光度计

722系列可见分光光度计

北京中仪宇盛科技有限公司

 

紫外可见分光光度计

紫外可见分光光度计

上海舜宇恒平科学仪器有限公司

 

i系列紫外可见分光光度计

i系列紫外可见分光光度计

上海仪电分析仪器有限公司

 

UV765紫外可见分光光度计

UV765紫外可见分光光度计

上海仪电分析仪器有限公司

 

L系列紫外可见分光光度计

L系列紫外可见分光光度计

上海仪电分析仪器有限公司

 

L9 双光束紫外可见分光光度计

L9 双光束紫外可见分光光度计

上海仪电分析仪器有限公司

 

L8(762)双光束 紫外可见分光光度计

L8(762)双光束 紫外可见分光光度计

上海仪电分析仪器有限公司

 

722S紫外可见分光光度计

722S紫外可见分光光度计

上海仪电分析仪器有限公司

 

紫外光可见光分光光度计

紫外光可见光分光光度计

北京中科科尔仪器有限公司

 

可见光和紫外光可见光分光光度计

可见光和紫外光可见光分光光度计

北京中科科尔仪器有限公司

 

U-3010/3310系列紫外可见分光光度计

U-3010/3310系列紫外可见分光光度计

天美仪拓实验室设备(上海)有限公司

 

Agilent Cary 60 紫外可见分光光度计

Agilent Cary 60 紫外可见分光光度计

北京绿绵科技有限公司

 

TU-19系列紫外可见分光光度计

TU-19系列紫外可见分光光度计

北京普析通用仪器有限责任公司

 

UV-2450/2550紫外可见分光光度计

UV-2450/2550紫外可见分光光度计

岛津企业管理(中国)有限公司/岛津(香港)有限公司

 

UV-1800紫外可见分光光度计

UV-1800紫外可见分光光度计

岛津企业管理(中国)有限公司/岛津(香港)有限公司

 

UVProbe UV-VIS分光光度计软件

UVProbe UV-VIS分光光度计软件

岛津企业管理(中国)有限公司/岛津(香港)有限公司

 

紫外可见近红外分光光度计SolidSpec-3700i/3700i DUV

紫外可见近红外分光光度计SolidSpec-3700i/3700i DUV

岛津企业管理(中国)有限公司/岛津(香港)有限公司

 

ISO 22309-2006



标准号
ISO 22309-2006
发布日期
2006年04月
实施日期
废止日期
中国标准分类号
N55
国际标准分类号
71.040.50
发布单位
国际标准化组织
代替标准
ISO 22309-2011
适用范围
This International Standard gives guidance on the quantitative analysis at specific points or areas of a specimen using energy-dispersive spectrometry (EDS) fitted to a scanning electron microscope (SEM) or electron probe microanalyser (EPMA); any expression of amount, i.e. in terms of percent (mass fraction), as large/small or major/minor amounts is deemed to be quantitative. The correct identification of all elements present in the specimen is a necessary part of quantitative analysis and is therefore considered in this International Standard. This International Standard provides guidance on the various approaches and is applicable to routine quantitative analysis of mass fractions down to 1 %, utilising either reference materials or "standardless" procedures. It can be used with confidence for elements with atomic number Z > 10. Guidance on the analysis of light elements with Z < 11 is also given. NOTE With care, mass fractions as low as 0,1 % are measurable when there is no peak overlap and the relevant characteristic line is strongly excited. This International Standard applies principally to quantitative analyses on a flat polished specimen surface. The basic procedures are also applicable to the analysis of specimens that do not have a polished surface but additional uncertainty components will be introduced. There is no accepted method for accurate quantitative EDS analysis of light elements. However, several EDS methods do exist. These are the following. a) Measuring peak areas and comparing intensities in the same way as for heavier elements. For the reasons explained in Annex D, the uncertainty and inaccuracy associated with the results for light elements will be greater than for the heavier elements. b) Where the light element is known to be combined stoichiometrically with heavier elements (Z > 10) in the specimen, its concentration can be determined by summing the appropriate proportions of concentrations of the other elements. This is often used for the analysis of oxygen in silicate mineral specimens. c) Calculation of concentration by difference where the light element percentage is 100% minus the percentage sum of the analysed elements. This method is only possible with good beam-current stability and a separate measurement of at least one reference specimen and it requires very accurate analysis of the other elements in the specimen. Annex D summarises the problems of light element analysis, additional to those that exist for quantitative analysis of the heavier elements. If both EDS and wavelength spectrometry (WDS) are available, then WDS can be used to overcome the problems of peak overlap that occur with EDS at low energies. However, many of the other issues are common to both techniques.

ISO 22309-2006 中可能用到的仪器设备


谁引用了ISO 22309-2006 更多引用





Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号