SAE AIR 5450-2008
高级管推进器空中推力测定

Advanced Ducted Propulsor In-Flight Thrust Determination


说明:

  • 此图仅显示与当前标准最近的5级引用;
  • 鼠标放置在图上可以看到标题编号;
  • 此图可以通过鼠标滚轮放大或者缩小;
  • 表示标准的节点,可以拖动;
  • 绿色表示标准:SAE AIR 5450-2008 , 绿色、红色表示本平台存在此标准,您可以下载或者购买,灰色表示平台不存在此标准;
  • 箭头终点方向的标准引用了起点方向的标准。

 

 

非常抱歉,我们暂时无法提供预览,您可以试试: 免费下载 SAE AIR 5450-2008 前三页,或者稍后再访问。

点击下载后,生成下载文件时间比较长,请耐心等待......

 



标准号
SAE AIR 5450-2008
发布日期
2008年08月22日
实施日期
废止日期
中国标准分类号
V30
国际标准分类号
49.050
发布单位
美国机动车工程师协会
引用标准
SAE AS 755 SAE AIR 1678 SAE AIR 1703 SAE AIR 4065 SAE ARP 1990 SAE AIR 5020 SAE SP-674
适用范围
The emerging ultra high bypass ratio ADP engines, with nozzle pressure ratios significantly lower, and bypass ratios significantly higher, than those of the current turbofan engines, may present new in-flight thrust determination challenges that are not specifically covered in AIR1703. This document addresses candidate methods and the additional challenges to the thrust determination for these ADP engines.These novel challenges result in part from the fact that some large ADP engines exceed present altitude test facility capabilities. The traditional methods of nozzle coefficient extrapolation may not be most satisfactory because of the increased error due to the ADP higher ratio of gross to net thrust, and because of the increased sensitivity of in-flightthrust uncertainty at the lower fan nozzle pressure ratio. An additional challenge covered by this document is the higher ensitivity of ADP in-flight thrust uncertainty to the external flow field around the engine, and the changes in this flow fielddue to aircraft configuration and operations.Calibrations for in-flight thrust determination for these ADP engines may have to be based on other alternate methods.Recently, large size turbo powered simulators (TPS) of propulsion systems (including the nacelle) have been developed and thus provide a new capability for in-flight thrust determination. Furthermore Computational Fluid Dynamic (CFD) analysis may prove to be a viable supplement to ground (sea level) engine testing and sub-scale model coefficientextrapolations to cruise conditions. These recent developments are described within along with their associated error assessments.The candidate thrust methods build on the work presented in AIR1703. The document includes a comprehensive uncertainty assessment conducted per AIR1678 to identify the major thrust determination options. Fundamental to this uncertainty assessment are the influence coefficients relating in-flight thrust calculation uncertainty to the measuredparameters and derived coefficients. These influence coefficients were developed from three typical public domain, generic engine cycle models.For the major potential thrust determination options, the overall thrust and airflow calibration processes are defined in detail. Road maps are included showing model, engine and flight-tests, measurements and correlations, calibrationprocedures and analyses. The document addresses the pros and cons of each of the major thrust determination options, including a discussion of the key assumptions and expected uncertainties.1.1 Document RoadmapThe following schematic shows how to use this document. The type of thrust method used is dependent on several factors such as: the nature of the program itself and whether it’s a new aircraft and engine or a re-engine program; theperformance and guarantee requirements; the thrust accuracy required; the available budget; the power management parameter; etc.Sections 3 through 5 provide methodology and background information relevant to the challenges of integrating an ADP propulsion system into an aircraft. The key engineering activity to determine the validated in-flight thrust performance isfocused in Sections 6 through 9.




Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号