71.020 化工生产 标准查询与下载



共找到 288 条与 化工生产 相关的标准,共 20

本技术采用TPO发泡微球方式设定,取材容易、成本低廉,采用工艺简单,设备投入少,克服了传统化学发泡和超临界物理发泡工艺复杂,设备投入大,控制困难等缺点,采用密炼机制备发泡母粒、双螺杆挤出机改性接枝发泡,模具热压成型系列工艺,所得制品密度为0.05-0.9,性能十分优异,具有环境友好,不破坏大气层的优点,所制得制品质轻,比重从0.5-0.9g/cm3均可制得,制品具有柔韧,手感好,回弹优良等优势。

TPO foamed microspheres

ICS
71.020
CCS
C265
发布
2022-06-16
实施
2022-08-17

3 原理 试样经氢氧化钠和过氧化钠熔融后,用水提取,稀土元素形成氢氧化物沉淀。在溶液中加入三乙醇胺络合铁、铝,加入EGTA络合钙、钡,沉淀用氢氧化钠溶液和水洗涤。浓硝酸加热溶解上述沉淀,经冷却后定容,采用电感耦合等离子体发射光谱仪或电感耦合等离子体质谱仪测定16种稀土元素含量。 4 试剂和材料 除非另有说明,在分析中均使用分析纯试剂和符合GB/T 6682中的一级分析实验室用水。 4.1 氢氧化钠:分析纯。 4.2 过氧化钠:分析纯。 4.3 硝酸:优级纯。 4.4 氢氧化钠:分析纯。 4.5 三乙醇胺:分析纯。 4.6 乙二醇二乙醚二胺四乙酸(EGTA):分析纯。 4.7 氢氧化钠溶液(10g/L):准确称取1g氢氧化钠(4.4)溶于100mL水中。 4.8 氢氧化钠溶液(100g/L):准确称取10g氢氧化钠(4.4)溶于100mL水中。 4.9 三乙醇胺溶液(5%):准确量取5mL三乙醇胺(4.5),用水定容至100mL。 4.10 EGTA溶液(0.1mol/L):称取3.8gEGTA(4.6)于100mL烧杯中,加入50mL水,低温加热,搅拌下滴加氢氧化钠溶液(4.8)至刚好溶解,冷却至室温,加水约至100mL。 4.11 稀土标准储备溶液:市售含16种稀土元素(La,Ce,Pr,Nd ,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,Sc)的有证标准溶液,浓度为100μg/mL。 4.12 稀土标准中间溶液:准确吸取1.0mL稀土标准储备溶液(4.11),于200mL容量瓶中,加入10mL硝酸(4.3),用水定容至200mL,此为500μg/L的稀土标准中间溶液。 4.13 液氩或高纯氩气:纯度≥99.999% 4.14 高纯氦气:纯度≥99.999% 5 仪器与设备 5.1 电感耦合等离子体发射光谱仪(ICP-OES) 5.2 电感耦合等离子体质谱仪(ICP-MS) 5.3 分析天平:感量0.0001g。 6 样品的制备 磷矿石经研磨,过200目的筛子后,在105℃烘箱中烘至恒重(约2h~4h),并置于干燥器中,冷却至室温,备用。 7 试样溶液的制备 7.1 取3g氢氧化钠置于刚玉坩埚底部,准确称取试样1g,精确到0.0001g,置于刚玉坩埚中,再覆盖2g过氧化钠于顶层,加盖,置于高温炉中,从室温升至700℃恒温2min,取出冷却。 7.2 将熔融物(7.1)置于预先盛有100mL沸水的300mL烧杯中,加入10mL的三乙醇胺溶液(4.9)和10mL的EGTA溶液(4.10),置于电炉上加热煮沸,使融块脱落,洗出坩埚,用水稀释至约200mL,冷却。 7.3 烧杯中的溶液(7.2)经中速定量滤纸过滤,用氢氧化钠溶液(4.7)冲洗烧杯、滤纸及沉淀7次~8次,再用水洗1次~2次,弃去滤液。 7.4 将滤纸及沉淀(7.3)一起转移至300mL烧杯中,并加入20mL硝酸(4.3),搅拌、在电炉上加热使其溶解,冷却至室温后,转移至100mL容量瓶中,用水定容至刻度,摇匀。用快速定性滤纸过滤上述溶液,得到的滤液即为试样溶液。 7.5 根据试样溶液(7.4)中各稀土元素的含量,将其进行稀释,保证待测溶液的浓度处于校准曲线范围内。 8. 电感耦合等离子体发射光谱法 8.1 电感耦合等离子体发射光谱仪(ICP-OES)的参考工作条件(见附录A) 8.2 标准工作溶液的配制 准确移取0mL、0.05mL、0.10mL、0.50mL、1.00mL、5.00mL稀土标准储备溶液(4.11),分别加入5mL硝酸(4.3),加水定容至100mL,配制成各稀土元素含量为0μg/mL、0.05μg/mL、0.10μg/mL、0.50μg/mL、1.00μg/mL、5.00μg/mL的混合标准溶液。 8.3 测定 按照上述仪器参考条件,选择附录A中列出的各稀土元素的最佳谱线波长,调整仪器至最佳工作状态,通过蠕动泵将标准工作溶液(7.3.1)引入电感耦合等离子体发射光谱仪中,进行测定。以待测元 素的质量浓度为横坐标,发射光谱强度为纵坐标,绘制16种稀土元素的校准曲线。并在相同条件下对试样溶液(7.1.5)进行测定。同时进行平行试验。 8.4 空白试验 除不称取试样外,均按上述步骤进行。 8.5 结果的计算和表述 磷矿中各稀土元素的含量 ,数值以毫克每千克(mg/kg)表示,按式(1)计算:   ...........................................................(1) 式中: -------试样溶液中各稀土元素的浓度,单位为微克每毫升(μg/mL);  -------空白溶液中各稀土元素的浓度,单位为微克每毫升(μg/mL);  -------试样溶液的定容体积,单位为毫升(mL);  -------试样质量,单位为克(g)。 取平行测定结果的平均值作为测定结果,结果保留到小数点后一位。 8.6 方法的准确度和精密度 8.6.1 方法的准确度 通过加标试验,本方法测得磷矿中各稀土含量的加标回收率在80%~120%之间。 8.6.2 方法的精密度 在重复性条件下获得的两次独立测定结果的相对相差,应符合表1的要求。 表1   实验室内重复性要求 稀土含量/(mg/kg) 相对相差/% 1<Wi≤5 20 5<Wi≤50 15 50<Wi≤500 10 Wi>500 5 8.7 检出限及定量限 各稀土元素的检出限(LOD)与定量限(LOQ)如表2所示。 表2   稀土元素的检出限与定量限 元素 谱线波长/nm 检出限/(mg/kg) 定量限/(mg/kg) 元素 谱线波长/nm 检出限/(mg/kg) 定量限/(mg/kg) Ce 404.076 3.7 11.1 Nd 401.225 2.4 7.2 Dy 353.170 1.2 3.6 Pr 414.311 1.8 5.4 Er 369.265 1.4 4.2 Sm 360.949 2.7 8.1 Eu 381.967 0.3 0.9 Tb 350.917 1.8 5.4 Gd 342.247 1.1 3.3 Tm 346.220 1.4 4.2 Ho 345.600 0.9 2.7 Y 437.494 3.5 10.5 La 419.655 0.6 1.8 Yb 369.419 0.2 0.6 Lu 261.542 0.2 0.6 Sc 361.384 0.1 0.3 9 电感耦合等离子体质谱法 9.1 电感耦合等离子体质谱仪(ICP-MS)的参考工作条件(见附录B) 9.2 标准工作溶液的配制 准确移取0mL、0.2mL、1.0mL、2.0mL、4.0mL、10.00mL稀土标准中间溶液(4.12),分别加入5mL硝酸(4.3),加水定容至100mL,配制梯度为0μg/L、1.0μg/L、5.0μg/L、10.0μg/L、20.0μg/L、50.0μg/L的混合标准溶液。 9.3 测定 按照上述仪器参考条件,选择附录B中列出的各稀土元素的最佳质量数,调整仪器至最佳工作状态,通过蠕动泵将标准工作溶液(7.3.1)引入电感耦合等离子体发射质谱仪中,进行测定。以待测元素的质量浓度为横坐标,待测元素质谱信号的强度为纵坐标,绘制16种稀土元素的校准曲线,并在相同条件下对待测溶液(8.1.1)进行测定。同时进行平行试验。 9.4 空白试验 除不称取试样外,均按上述步骤进行。 9.5 结果的计算和表述 磷矿中各稀土元素的含量 ,数值以毫克每千克(mg/kg)表示,按式(1)计算:   ...........................................................(2)     式中: -------试样溶液中各稀土元素的浓度,单位为微克每毫升(μg/L);  -------空白溶液中各稀土元素的浓度,单位为微克每毫升(μg/L);  -------试样溶液的定容体积,单位为毫升(mL);  -------待测溶液的稀释倍数。  -------试样质量,单位为克(g)。 取平行测定结果的平均值作为测定结果,结果保留到小数点后两位。 9.6 方法的准确度和精密度 9.6.1 方法的准确度 通过加标试验,本方法测得磷矿中各稀土含量的加标回收率在80%~120%之间。 9.6.2 方法的精密度 在重复性条件下获得的两次独立测定结果的相对相差,应符合表1的要求。 表3   实验室内重复性要求 稀土含量/(mg/kg) 相对相差/% 0.01<Wi≤0.1 20 0.1<Wi≤50 5 Wi>50 10 9.7 检出限及定量限 磷矿中各稀土元素的检出限(LOD)均为与定量限(LOQ)如下表所示。 表4   稀土元素的检出限与定量限 元素 质量数 检出限/(mg/kg) 定量限/(mg/kg) 元素 质量数 检出限/(mg/kg) 定量限/(mg/kg) Ce 140 0.01 0.03 Nd 142 0.005 0.01 Dy 164 0.01 0.02 Pr 141 0.003 0.01 Er 166 0.002 0.01 Sm 147 0.005 0.01 Eu 153 0.002 0.01 Tb 159 0.002 0.005 Gd 158 0.003 0.01 Tm 169 0.003 0.01 Ho 165 0.002 0.01 Y 89 0.005 0.01 La 139 0.002 0.01 Yb 174 0.002 0.01 Lu 175 0.002 0.005 Sc 45 0.002 0.01

Determination of Rare Earth Content in Phosphate Rock

ICS
71.020
CCS
M745
发布
2022-06-15
实施
2022-07-20

项目 指标 外观 无色或微黄色透明液体 水分(%) ≤1 有机挥发物(%) ≤10 含量(%) ≥90

2-Phenylisopropanol

ICS
71.020
CCS
C261
发布
2022-06-15
实施
2022-08-05

本技术提供的发泡体用于制备鞋材,拖鞋,箱包,车船材料,飞机材料,航天材料,家具材料,卫生医用材料,漂浮材料,填充材料,建筑装饰材料,泡沫轮胎,泡沫管材,保温材料,隔热材料,隔音材料,广告材料,户外用品,包装材料,服装材料,饰品材料,帽子材料,减震材料,儿童玩具,器乐辅助用品,生活日用品,各种体育用品辅材等制品,在发泡体为底的鞋底中亦具有广泛应用,其中鞋底为鞋中底或鞋大底,拖鞋。 本技术提供的一种 PBAT(聚己二酸 / 对苯二甲酸丁二酯)发泡体,不仅具有绿色环保,较轻重量的性能,发泡性能和力学性能优,发泡倍率高,气泡均匀,耐热性好,耐久性能好,拉伸性能良好,抗冲击性能优,还有很好的生物降解性,由其制品重量轻,可适用性能要求较高的制品。 本技术采用 PBAT(聚己二酸 / 对苯二甲酸丁二酯)为主体胶料,经混炼、造粒、射出硫化发泡制成。该 PBAT(聚己二酸 / 对苯二甲酸丁二酯)发泡体的比重轻,性能优,具有很好的耐热性和冲击性能。以该发泡体制备的鞋中底、质量轻、耐久性能佳,在竞技类和休闲类的鞋中底,鞋面成型件,拖鞋,鞋垫等,具有重要的环保应用价值,本发明涉及发泡体适用于各种鞋材,箱包,车船材料,飞机材料,航天材料,家具材料,卫生医用材料,漂浮材料,填充材料,建筑装饰材料,泡沫管材,保温材料,隔热材料,隔音材料,广告材料,户外用品,包装材料,服装材料,减震材料,儿童玩具,生活日用品,各种体育用品辅材等的应用。

PBAT foaming body

ICS
71.020
CCS
C265
发布
2022-06-11
实施
2022-08-17

本技术改性后的OBC的发泡体,产品比重轻、弹性好、防震减压,所添加木质纤维素粉体使制品舒适柔软具备环境友好之功效;发泡体引用木质纤维素 粉体作为填充补强剂,所得发泡体制品弹性、压缩变形性能优,抗冲击性能优,具有更广阔的高低温变形性能,气泡均匀,耐久性能好,等物理机械性能得到进一步提升,同时具有抗菌防霉的功效。 本技术可应用在制备鞋材,箱包,车船材料,飞机材料,航天材料,家具材料,卫生医用材料,漂浮材料,填充材料,建筑装饰材料,泡沫轮胎,泡沫管材,保温材料,隔热材料,隔音材料,广告材料,户外用品,包装材料,服装材料,饰品材料,帽子材料,减震材料,儿童玩具,器乐辅助用品,生活日用品,体育用品辅材等性能要求较高领域。

Foam of olefin block copolymer material

ICS
71.020
CCS
C265
发布
2022-06-08
实施
2022-08-17

本技术提出的一种改性丙烯基弹性体发泡体,它发泡性能和力学性能优,发泡倍率高,气泡均匀,高弹性,质量轻,抗菌防霉,拉伸变形回复性能良好,压缩变形性能优,抗冲击性能优,应性好,柔韧性好,具有更广阔的高低温变形性能,可以回收再利用。 本 技术 具 有 抗 菌 防 霉 的 功 效 :检 验 依 据 和 方 法 (Standard and Methods):QB/T2591-2003 抗菌塑料-抗细菌性能试验方法和抗菌效果,ASTM G21-2009 合成聚合材料防霉性的测定,检测项目 (Items of Analysis):抗菌测试 (大肠杆菌ATCC25922、金黄色葡萄球菌ATCC6538、白色念珠菌 ATCC10231)。 本技术主要应用于制备鞋材,箱包,车船材料,飞机材料,航天材料,家具 材料,卫生医用材料,漂浮材料,填充材料,建筑装饰材料,泡沫轮胎,泡沫管材,保温材料,隔热材料,隔音材料,广告材料,户外用品,包装材料,服装材料,饰品材料,帽子材料,减震材料,儿童玩具,器乐辅助用品,生活日用品,体育用品辅材等。

Modified acrylic elastomer foam

ICS
71.020
CCS
C265
发布
2022-06-06
实施
2022-08-17

2.1 开车前的准备工作 2.1.1 备好防护用品和应急救援物资,值班人员必须穿戴劳动防护用品。 2.1.2 检查各泵区供电是否到位,电机接线是否正确。 2.1.3 启动冷却水泵,缓缓打开所有使用冷却水的设备的供排水阀门,控制冷却水压力不能超过0.3MPa,以免损坏冷却设备,观察冷却水管路是否畅通。 2.1.4 检查蒸馏系统各管道、设备、阀门是否处在安全待用状态。 2.1.5 通知供汽岗位供汽、供氯岗位供氯。检查供汽、供氯管道及阀门,确保无泄漏。  2.2 开车操作 2.2.1 打开氢溴酸泵入口阀,待氢溴酸充满泵体后,启动氢溴酸泵,慢慢打开泵出口阀门,控制氢溴酸进蒸馏塔的上料量在1m3/h左右,打开塔底氢溴酸阀关闭废酸阀,使塔体经氢溴酸泵和氢溴酸罐形成封闭循环。 2.2.2 检查换热器及其对接管道无渗漏时,慢慢打开蒸汽控制阀门,逐渐升温。对蒸馏塔进行温塔,温塔时速度不能太快,以免损坏塔体,新塔温塔时应对蒸馏塔进行热紧,温塔时间不小于2小时,平时温塔可温1小时(冬季可适当延长)。 2.2.3 塔温增至60℃时,慢慢提高氢溴酸流量,加大蒸汽量,并慢慢打开供氯阀门,通过转子流量计控制氯气进塔量(开氯气阀门时严禁一次开大,以防将转子了流量计撞破,爆炸伤人)。 2.2.4 待塔顶温度达到70-80℃时,将氢溴酸流量提到车间要求蒸馏量,同时控制供氯量和蒸汽量,使塔顶温度保持在70-85℃。打开塔底蒸馏废酸阀关闭完成液阀。 2.2.5 控制加氯量,使蒸馏废液含溴量控制在0.5kg/m3,产品含氯量控制在0.05%以下。 2.2.6 蒸馏正常时,一二级溴水分离瓶内的溴水呈红色透明,溴与溴水层次分明,如果出现浑浊现象应立即降低蒸汽量或供氯量,以防影响产品质量。如果塔温过高,蒸馏塔顶有明显的吹水现象,否则既是加氯过量。 2.2.7 加氯不足时,蒸馏废液呈黄绿色;若温度过低时,蒸馏废液和蒸馏出气口呈暗红色,应及时加氯或加蒸汽供量。 2.3 正常停车程序 2.3.1 慢慢减少蒸汽加入量,使蒸馏塔温度慢慢下降。 2.3.2 慢慢减少氢溴酸量、氯气量,待塔温降至60℃时,关闭氯气阀门停止氯气供应;同时关闭蒸汽阀门,停止供汽。 2.3.3 当塔温降至40℃以下时停止氢溴酸泵,关闭氢溴酸阀门。 2.3.4 停止冷却水供应。若长时间停车,则停冷却水泵,慢慢排掉冷却水。 2.4  紧急停车 2.4.1 如遇到突然停电或其他故障需紧急停车时,应尽可能快的关闭氯气、蒸汽阀门,通知供汽、供氯岗位停止供汽、供氯。 2.4.2 加强巡检,防止有异常情况发生。短时停电来电后 ,应尽快恢复冷却水供应。

Industrial Bromine Distillation Process Operation Technical Regulations

ICS
71.020
CCS
C261
发布
2022-05-30
实施
2022-06-14

Coal Chemical Industry Enterprise Emergency Plan Preparation Guide Part 1: Coking

ICS
71.020
CCS
G09
发布
2022-05-09
实施
2022-06-08

本标准规定了儿童活动场所装饰装修用内墙涂料(包括面漆和底漆)产品的要求及有害物质限量要求、试验方法、检验规则、标志包装、涂装安全和防护。

Interior wall coatings for children's playgrounds

ICS
71.020
CCS
C264
发布
2022-04-24
实施
2022-04-28

本标准规定了建筑用薄涂型艺术涂料的分类、要求、试验方法、检验规则及标志、包装和贮存。

Thin coat type art paint for construction

ICS
71.020
CCS
C264
发布
2022-04-24
实施
2022-04-28

本标准规定了厚涂型艺术涂料的分类、技术要求、试验方法、检验规则及标志、包装和贮存。

Impasto art paint for construction

ICS
71.020
CCS
C264
发布
2022-04-24
实施
2022-04-28

1.1 This is a guide for conducting risk-based corrective action (RBCA) at chemical release sites based on protecting human health and the environment. The RBCA is a consistent decision-making process for the assessment and response to chemical releases. Chemical release sites vary greatly in terms of complexity, physical and chemical characteristics, and in the risk that they may pose to human health and the environment. The RBCA process recognizes this diversity by using a tiered approach that integrates site assessment and response actions with human health and ecological risk assessment to determine the need for remedial action and to tailor corrective action activities to site-specific conditions and risks. The evaluations and methods used in the RBCA process begin with simple analyses in Tier 1 and move to more complex evaluations in either Tier 2 or Tier 3, as applicable. The process of gathering and evaluating data is conducted in a scaled fashion. Consequently, only the data that are necessary for a particular tier’s decision-making are collected at that tier. 1.2 This guide describes an approach for risk-based corrective action. It is intended to help direct and streamline the corrective action process and to complement but not to supersede federal, state and local regulations. It can be employed at sites where corrective action is being conducted including sites where there may not be a regulatory framework for corrective action, or where the user wishes to conduct corrective action such as sites in voluntary cleanup programs or under Brownfields initiatives. In addition, it can also be used as a unifying framework when several different agency programs affect the site. Furthermore, the user should be aware of the federal, state and local corrective action programs that are 1 This guide is under the jurisdiction of ASTM Committee E50 on Environmental Assessment, Risk Management and Corrective Action and is the direct responsibility of Subcommittee E50.04 on Corrective Action. Current edition approved April 1, 2022. Published May 2022. Originally approved in 1998. Last previous edition approved in 2015 as E2081-00 (2015). DOI: 10.1520/E2081-22. Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 1 applicable for the site and, regardless of the program, federal, state and local agency approvals may be required to implement the processes outlined in this guide. Finally, regardless of whether a corrective action is specifically governed by a regulatory program, the user should consult the regulatory agency requirements to identify the appropriate technical policy decisions prior to implementing the RBCA process. 1.3 There are numerous technical policy decisions that must be made to implement the RBCA process, for example, defining data quality objectives, determining target risk levels, specifying the appropriate statistics and sample sizes for calculating exposure concentrations, selection of exposure assumptions, determining when and how to account for cumulative risks and additive effects among chemical(s) of concern and addressing resource protection. It is not the intent of this guide to define appropriate technical policy decisions. The user must identify the appropriate technical policy decisions. 1.4 The general performance standard for this guide requires that: 1.4.1 Technical policy decisions be identified before beginning the process, 1.4.2 Data and information collected during the RBCA process, including historical data as well as new data collected during the site assessment, will be relevant to and of sufficient quantity and quality to answer the questions posed by and the decisions to be made in the RBCA process, 1.4.3 Actions taken during the risk-based decision process will be protective of human health and the environment, 1.4.4 Applicable federal, state and local regulations will be followed (for example, waste management requirements, ground water designations, worker protection) and, 1.4.5 Remedial actions implemented will not result in higher risk levels than existed before taking actions. 1.5 ASTM standards are not federal or state regulations, they are consensus standards that can voluntarily be followed. 1.6 The RBCA process is not limited to a particular class of compounds. This guide is intended to be a companion to Guide E1739, and does not supersede that document for petroleum releases. If a release site contains a mixture of releases of petroleum and other chemicals, this guide should be followed. 1.7 The United States Environmental Protection Agency (USEPA) has developed guidance for human health risk evaluation (see Appendix X9 for other resources). Many of the components of this guidance have been integrated into the RBCA framework. The science of ecological evaluation and the process by which the science is applied, however, are not as well defined and agreed upon as human health risk assessment. Therefore, the information provided in this guide for each tier evaluation for relevant ecological receptors and habitats is general. The user is referred to Appendix X5, which provides additional information regarding the development of a RBCA framework for protection of ecological resources. 1.8 The decision process described in this guide integrates exposure and risk assessment practices with site assessment activities and remedial action selection to ensure that the chosen actions are protective of human health and the environment. The following general sequence of events is prescribed in RBCA: 1.8.1 Perform an initial site assessment and develop the first iteration of the site conceptual model (see Guides E1689 and E3240 and ISO 21365:2019). If the information is sufficient to demonstrate that there are no complete or potentially complete exposure pathways, then no further action is warranted, 1.8.2 Evaluate the site (see definition of site 3.2.50) for response actions (multiple sites at a single facility may require different response actions and times), 1.8.3 Implement a response action that is appropriate for conditions found at the site during the site response action evaluation, 1.8.4 Define data requirements, develop data quality objectives, and perform a site assessment for the Tier 1 evaluation if the site conceptual model indicates that the tiered evaluation is appropriate, 1.8.5 Conduct an exposure pathway analysis to determine if relevant ecological receptors and habitats are present and if complete and potentially complete exposure pathways are present. If no relevant ecological receptors or habitats or complete and potentially complete exposure pathways exist, then no further action for relevant ecological receptors and habitats is warranted, 1.8.6 For potential human exposure pathways, identify the applicable Risk Based Screening Levels (RBSL) and for potential ecological exposure pathways, identify the applicable Relevant Ecological Screening Criteria (RESC). In addition, identify any Other Relevant Measurable Criteria (ORMC), as applicable. Collectively these are the Tier 1 corrective action goals for the site; 1.8.7 Compare site conditions to the Tier 1 corrective action goals determined to be applicable to the site; 1.8.8 If site conditions meet the corrective action goals for chemical(s) of concern then, no further action is warranted, 1.8.9 If site conditions do not meet corrective action goals for chemical(s) of concern then, one or more of the following actions is appropriate: 1.8.9.1 Further tier evaluation; 1.8.9.2 Implement interim remedial action; 1.8.9.3 Design and implement remedial action to achieve the corrective action goals. 1.8.10 Define Tier 2 data requirements, data quality objectives, collect additional site-specific information and update the site conceptual model, as necessary, if further tier evaluation is warranted, 1.8.11 Develop point(s) of demonstration and Tier 2 corrective action goals based on Site-Specific Target Levels (SSTL), Site-Specific Ecological Criteria (SSEC) or ORMC, where appropriate, for complete and potentially complete exposure pathways, including exposure pathways for which no RBSL, RESC or ORMC, as applicable, were determined; 1.8.12 Compare site conditions to the Tier 2 corrective action goals determined to be applicable to the site; 1.8.13 If site conditions meet corrective action goals for chemical(s) of concern, then no further action is warranted, E2081 − 22 2 1.8.14 If site conditions do not meet corrective action goals for chemical(s) of concern then, one or more of the following actions is appropriate: 1.8.14.1 Further tier evaluation; 1.8.14.2 Implement interim remedial action; 1.8.14.3 Design and implement remedial action to achieve the corrective action goals. 1.8.15 Define Tier 3 data requirements, data quality objectives and collect additional site-specific information and update the site conceptual model, as necessary, if further tier evaluation is warranted, 1.8.16 Develop point(s) of demonstration and Tier 3 corrective action goals based on SSTL, SSEC, or ORMC, where appropriate; 1.8.17 Compare site conditions to the Tier 3 corrective action goals, 1.8.18 If site conditions meet corrective action goals for chemical(s) of concern, then no further action is warranted, 1.8.19 If site conditions do not meet corrective action goals for chemical(s) of concern, then one of the following actions is appropriate: 1.8.19.1 Implement interim remedial action to facilitate reassessment of the tier evaluation; 1.8.19.2 Design and implement remedial action to achieve the corrective action goals. 1.8.20 Develop and implement a monitoring plan based on the corrective action goals to validate the assumptions used for the tier evaluation and to demonstrate effectiveness of the remedial action, as applicable. 1.9 For chemical release sites currently in corrective action, the user should review information and data available for the site and determine the most appropriate entry point into the RBCA framework consistent with the general performance standards and sequence of events outlined in this guide. 1.10 This Guide is Organized as Follows—Section 2 lists referenced documents, Section 3 defines terminology used in this guide, Section 4 describes the significance and use of this guide, Section 5 is a summary of the tiered approach, and Section 6 presents the RBCA procedures in a step-by-step process. Appendix X1 provides guidance on developing technical policy decisions and building a RBCA program, Appendix X2 provides examples of chemical properties and effects data that may be useful for a RBCA evaluation, Appendix X3 provides EXAMPLE development of RBSL, Appendix X4 describes the use of predictive modeling, Appendix X5 provides an outline of the process of the ecological evaluation, Appendix X6 provides information about activity and use limitations, Appendix X7 includes illustrative examples of the application of the RBCA framework, Appendix X8 addresses Perand polyfluoroalkyl substances (PFAS). PFAS are synthetic chemicals that do not occur naturally in the environment. There are many different types of PFAS such as perfluorocarboxylic acids (for example, PFOA, sometimes called C8, and PFNA) and perfluorosulfonates (for example, PFOS and PFHxS), and Appendix X9 includes references that may be helpful to the user. NOTE 1—Appendix X8 references the Washington Department of Ecology’s risk-based corrective action approach to PFAS as an example; numerous other states including Alaska, California, Colorado, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont have robust programs to address releases of PFAS to the environment. The appendixes are provided for additional information and are NOT included as mandatory sections of this guide. 1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Guide for Risk-Based Corrective Action

ICS
71.020
CCS
发布
2022-04-01
实施

本文件确立了石油和化工企业在产品安全管理过程中应遵守的规则。 本文件适用于从事化学品研发、生产、经营、使用、储存、运输、废弃处置等生产活动并实施责任关怀企业产品安全的管理。

Implementing rules of responsible care—Part 6:Product stewardship

ICS
71.020
CCS
C261
发布
2022-02-21
实施
2022-05-20

本文件确立了木质纤维基重金属治理材料生产的程序,界定了所涉及的术语和定义,规定了生产工艺流程和设施设备的要求,以及材料制备、混合、破碎、筛选、干燥、冷却、包装、环境保护等阶段的操作指示。 本文件适用于镉、铅、锌、铬、铜等重金属污染治理的木质纤维基重金属治理材料的生产。

Technical code of practice for production of wood fiber-based heavy metal adsorbent

ICS
71.020
CCS
C422
发布
2022-01-28
实施
2022-02-18

      本文件提供了在设备、设施和装置上进行检维修及改造等作业所涉及的能量隔离指导以及相关审核、沟通和培训的管理建议。       本文件适用于化工企业生产和工艺流程性设备设施上进行的安装、改造、修理、检查、测试、清洗、拆卸、保养和维护等作业活动。

Guidelines for implementation of energy isolation in chemical enterprises

ICS
71.020
CCS
C67
发布
2022-01-21
实施
2022-06-08

6   技术要求 6.1   颜色 管材颜色一般为淡黄色,其它颜色由供需双方协商确定,色泽应均匀一致。 6.2   外观 管材内、外壁应光滑、平整,无气泡、裂纹、凹陷、凸起、分解变色线及明显杂质;管材断面切口应平整、无裂口、毛刺并与管轴线垂直。 6.3   规格尺寸 6.3.1  外径系列管材尺寸及偏差   外径系列管材尺寸及偏差应符合表2的规定。 表2  外径系列管材尺寸及偏差                   单位:毫米 公称 外径 DN/OD 平均外径 dem偏差 环刚度(3%)等级 不圆度 承口平均 内径允许 偏差 最小承 口深度 Lo min 管材 长度 管材长 度偏差    SN25 SN32 SN50        公称 壁厚 en 壁厚 偏差 公称 壁厚 en 壁厚 偏差 公称 壁厚 en 壁厚 偏差      32 +0.2 -0.2 1.5 ±0.2 1.6 ±0.2 1.8 ±0.2 ≤0.8 +0.2 -0.2 22 6000, 9000, 12000 不允许  负偏差 63 +0.5 -0.3 2.6 ±0.3 3.0 ±0.3 3.5 ±0.3 ≤1.4 +0.3 -0.2 35   90 +0.5 -0.3 3.8 ±0.3 4.3 ±0.4 4.8 ±0.4 ≤1.8 +0.3 -0.2 46   100 +0.7 -0.3 4.2 ±0.4 4.8 ±0.4 5.0 ±0.4 ≤2.0 +0.3 -0.2 50   110 +0.7 -0.3 4.5 ±0.4 5.0 ±0.4 5.8 ±0.4 ≤2.1 +0.4 -0.3 55   135 +0.8 -0.3 5.2 ±0.4 6.5 ±0.4 7.1 ±0.5 ≤2.3 +0.4 -0.3 68   150 +0.9 -0.5 5.8 ±0.4 7.2 ±0.5 8.5 ±0.6 ≤2.5 +0.5 -0.3 76   166 +0.9 -0.5 6.5 ±0.5 8.0 ±0.6 8.8 ±0.6 ≤2.7 +0.5 -0.3 82   200 +1.0 -0.5 8.0 ±0.6 9 ±0.6 10.8 ±0.8 ≤3.2 +0.8 -0.5 100   225 +1.1 -0.5 8.5 ±0.6 9.6 ±0.6 11.5 ±0.8 ≤3.8 +0.8 -0.5 113   注:其他规格尺寸可由供需双方商定。 6.3.2  内径系列管材尺寸及偏差 内径系列管材尺寸及偏差应符合表3的规定。   表3 内径系列管材尺寸及偏差                                                                                               单位:毫米 公称 内径 DN/ID 平均内径 dim偏差 环刚度(3%)等级 不圆度 承口平均 内径允许 偏差 最小承 口深度 Lo min 管材 长度 管材长 度偏差    SN25 SN32 SN50        公称 壁厚 en 壁厚 偏差 公称 壁厚 en 壁厚 偏差 公称 壁厚 en 壁厚 偏差      67 +0.5 -0.3 3.0 ±0.3 3.4 ±0.3 3.8 ±0.3 ≤1.4 +0.5 -0.3 36 6000, 9000, 12000 不允许  负偏差 80 +0.5 -0.3 3.5 ±0.3 4.0 ±0.4 4.5 ±0.4 ≤1.8 +0.5 -0.3 46   90 +0.6 -0.3 4.0 ±0.4 4.5 ±0.4 5.0 ±0.4 ≤2.0 +0.6 -0.3 50   100 +0.7 -0.3 4.4 ±0.4 5.0 ±0.4 5.6 ±0.4 ≤2.1 +0.7 -0.3 55   125 +0.8 -0.3 5.5 ±0.4 6.2 ±0.4 7.0 ±0.5 ≤2.3 +0.8 -0.3 68   150 +0.9 -0.5 6.6 ±0.4 7.6 ±0.5 8.5 ±0.6 ≤2.5 +0.9 -0.3 80   175 +1.0 -0.5 7.7 ±0.6 8.8 ±0.6 9.8 ±0.8 ≤3.2 +1.0 -0.3 90   200 +1.1 -0.5 8.8 ±0.6 10 ±0.6 11.2 ±0.8 ≤3.8 +1.1 -0.3 110   注:其他规格尺寸可由供需双方商定。 6.3.2  弯曲度 管材弯曲度应小于1%。 6.4   管材的物理力学性能 管材的物理性能力学应符合表4的规定。 表4 管材物理力学性能 项目 单位 指标 环刚度 SN25 kN/m2 ≥25  SN32  ≥32  SN50  ≥50 落锤冲击试验 - 9/10及以上试样不应出现裂缝或破裂 表4 (续) 扁平试验 - 压缩至管内壁互相接触,无破裂、无裂纹 拉伸强度 轴向 MPa ≥42 断裂伸长率 % ≥120 纵向回缩率 % ≤5 静摩擦系数 - ≤0.35 阻燃性 氧指数(OI) - ≥40  自熄时间 s ≤10 耐电压试验(50KV) - 保持1 min不击穿 维卡软化温度 ℃ ≥79 连接密封试验 / 保持30 min,接头处不应渗水、漏水 7   试验方法           7.1   状态调节和试验环境 除另有规定外,试样应按GB/T 2918-2018的规定,在(23±2) ℃条件下进行状态调节,时间不少于24 h, 并在同样条件下进行试验。 7.2   外观和颜色 用肉眼观察,内壁可用光源照看。 7.3   尺寸测量 7.3.1  长度 按 GB/T 8806-2008 的规定,用精度不低于 1 mm 的量具测量。 7.3.2  平均内径(外径) 按GB/T 8806-2008的规定测量。用精度不低于0.02 mm的游标卡尺或其它量具测量。当用游标卡尺测量时,在试样同一截面上沿环向均匀间隔测量得到6个内径(外径)值,计算其算术平均值作为平均内径(外径)。 7.3.3  不圆度 按GB/T 8806-2008的规定测量同一截面的最大外径和最小外径,最大外径和最小外径之差为不圆度。 7.3.4 壁厚及偏差 按GB/T 8806-2008的规定进行测量。测出最大值与最小值,不足0.1 mm者进至0.1 mm。测量结果与公称壁厚的差为壁厚偏差。 7.3.5 承口尺寸 用精度为 0.02 mm 的游标卡尺按图 2 规定的部位测量承口深度;用精度为 0.01 mm 的内径量表测量承口中部两个相互垂直的内径,计算它们的算术平均值,为平均内径。 7.3.6  弯曲度 按QB/T 2803-2006的规定测量。 7.4  环刚度 按GB/T 9647-2015的规定进行试验。 7.5  扁平试验 按GB/T 9647-2015的有关规定进行试验。从三根管材上各取长度为(200±5) mm管段为试样,试样两端应垂直与轴线,切割平整,试验速度(10±2) mm/min。当试样压缩至管内壁互相接触时立即卸荷。 7.6  落锤冲击试验 按GB/T 14152-2001的规定进行试验。取长度为(200±20) mm的试样10段,冲击锤头为 d25 型,落锤冲击试验的冲击锤头质量与高度条件见表5;试样在(0±2) ℃下放置5 h,冲击须在30 s内完成,每个试样冲击一次。 表5 管材冲锤质量和下落高度 公称尺寸 /mm 落锤质量(偏差±1.0 %) kg 落锤高度(偏差±20) mm DN≤63 5.0 2000 63<DN≤90 8.0  90<DN≤110 10.0  110<DN≤200 15.0  DN≥225 20.0  7.7  拉伸强度 纵向拉伸强度按 GB/T 8804.2-2003 的规定进行试验。 7.8  断裂伸长率 按GB/T 8804.2-2003的规定,取5个试样进行试验;试样应按GB/T 8804.2-2003中5.2.1的要求采用机械加工的方式制备。计算其算术平均值作为试验结果。 7.9  纵向回缩率 按GB/T 6671-2001中规定的方法B-烘箱法进行试验。 7.10 静摩擦系数 按YD/T 841.1-2016 附录A的规定进行试验。 7.11 阻燃性 7.11.1  氧指数 按 GB/T 2406.2-2009 的规定进行试验。 7.11.2  自熄性 按 JG/T 3050-1998 的规定进行试验,从管材上截取长度(80-150) mm,宽度为(10±0.5)mm的试样,厚度为管材壁厚。 7.12 耐电压试验 按GB/T 1408.1-2016的规定进行试验。升压速度为1000 V/s,升压至50 kV,保持1 min观察是否击穿。 7.13 维卡软化温度 按GB/T 1633-2000中规定的A50法进行试验。 7.14 连接密封试验 按GB/T 6111-2018的规定进行试验。取两段长度为500 mm(允许偏差0 mm~20 mm)的试样,其中一段管材带承口,另一段管材按规定进行倒角,然后将两段管材用胶黏剂连接,两端采用A型密封接头对试样端头进行密封,向管材内注水,在23 ℃下,充满水加压到0.10 MPa保持30 min,观察接头处是否渗水漏水。

Polyvinyl chloride (modified anhydrous phosphogypsum) biaxially oriented power tube

ICS
71.020
CCS
C292
发布
2022-01-05
实施
2022-01-11

 要求  5.1 外观   应为微细粉末,颜色均一,无结块。 5.2化学成分      产品的基本要求应符合表1的规定。 表1 项        目 要求  200目 800目 1200目 细度(D90a) 75μm 18μm 12μm 硫酸钙含量/%,                   ≥ 80 水分/%,                         ≤ 2.0 水溶性五氧化二磷(P2O5)/%,      ≤ 0.5 水溶性氟离子(F-)/%,           ≤ 0.4 水溶性氧化镁/%,                ≤ 0.5 吸油值b/(g/100g),            ≤ 40 氯离子含量/%,                  ≤ 0.04 注:aD90表示90%以上粉体粒径小于该型粒径要求。 b吸油值仅在将改性无水磷石膏用作聚氯乙烯填料时要求。 5.3 放射性核素限量 应符合GB 6566的要求。 6  试验方法 6.1  外观  目视检查。 6.2  细度     按照GB/T 19077-2016的要求进行测定,90%以上的粉体粒径小于该型粒径要求。 6.3 硫酸钙(CaSO4)含量              按GB/T 5484-2012的第11章测定SO3含量,并按该标准中式(21)计算SO3含量,然后按式(1)计算硫酸钙(CaSO4)含量:        WCaSO4 = WSO3×1.70 .......................................(1)                                          WCaSO4——硫酸钙(CaSO4)的质量分数; WSO3——三氧化硫(SO3)的质量分数; 1.70——SO3质量分数换算为CaSO4质量分数的系数。 5.4 水分(H2O)含量              按GB/T 5484-2012的第10章进行。 5.5 水溶性五氧化二磷(P2O5)    按JC/T 2073进行。 5.6 水溶性氟离子(F-)    按JC/T 2073进行。 5.7 水溶性氧化镁(MgO)    按GB/T 5484-2012第27章进行。 5.8 吸油值    按GB/T 19281中规定的方法进行。 5.9 氯离子(Cl-) 按GB/T 5484-2012的第29章进行。 5.10 放射性    按GB 6566进行。

Modified anhydrous phosphogypsum for polymer road pipe network materials

ICS
71.020
CCS
C264
发布
2022-01-05
实施
2022-03-10

4  要求 4.1  外观 粉状产品、无机械杂质。  4.2 微晶肥料应符合表1的要求,同时应符合包装容器上的标明值。 表1  微晶肥料的要求 项   目  指标 总养分(N+P2O5+K2O)的质量分数a /%                   ≥ 40.0 水溶性磷占有效磷百分率/%                             ≥ 85 水分(H2O)的质量分数 b/%                             ≤ 2.0 细度(通过0.50mm试验筛)/%                           ≥ 80 微量元素(以单质计)的质量分数e/%                                 0.2~3.0 水不溶物含量  /%                                     ≤ 0.5 氯离子的质量分数/%                                   ≤ 3.0 a 组成产品的单一养分含量不应小于4.0%,且单一养分测定值与标明值负偏差的绝对值不应大于1.5%。 b 水分为出厂检验项目。 c 微量元素含量指铜、铁、锰、锌、硼、钼元素含量之和,产品应至少包含一种微量元素,含量不低于0.05%的单一微量元素均应计入微量元素含量中。钼元素含量不高于0.5%。 4.3缩二脲 符合供需双方约定的要求。 4.4肥料中有毒有害物质的限量要求 符合GB38400的要求。 5  试验方法 本文件中所用试剂、水和溶液的配制,在未注明规格和配制方法时,均按 HG/T 2843 的规定进行。 5.1 外观 目测法测定。 5.2  总氮含量的测定 按GB/T 8572进行测定。 5.3  有效磷含量的测定和水溶性磷占有效磷百分率的计算   按GB/T 8573进行测定。 5.4  钾含量的测定 按GB/T 8574进行测定。 5.5  水分的测定 按GB/T 8577或GB/T 8576进行测定。以GB/T 8577中的方法为仲裁法。 5.6  氯离子含量的测定 按GB/T 24890进行测定。 5.7  缩二脲含量的测定 按GB/T 22924进行测定。 5.8有毒有害物质的测定 按GB38400的规定执行。 5.9  微量元素的测定  按GB/T 14540进行测定。 5.10  细度的测定 5.10.1原理  用筛分的方法计算试样通过规定筛孔的质量分数 。 5.10.2 仪器 5.10.2.1 试验筛孔径0.50mm,另附筛盖和底盘。 5.10.2 .2 天平:感量0.5g。 5.10.2.3 电动振筛机 5.10.3分析步骤 将孔径0.50mm的试验筛放在底盘上,称取约100g试样(精确至0.5g),置于筛中,盖好筛盖,置于振筛机夹紧(或人工振筛),振荡5min,用毛刷轻轻扫动筛上物料,重复振荡3次,然后将筛上残留物扫在表面皿上,称重。 5.10.4 分析结果的表述 通过0.50mm试验筛的细度W,以质量分数(%)表示,按式(1)计算:                          W=(m-m1)×100/m…………………………(1) 式中: m ----- 试样的质量,单位为克(g); m1----- 筛上残留试样的质量,单位为克(g)。 5.11  水不溶物含量的测定   按NY/T 1973进行测定。  

Microcrystalline Fertilizer

ICS
71.020
CCS
C262
发布
2022-01-05
实施
2022-03-10

6、技术要求 6.1  颜色 管材内外层各自的颜色应均匀一致,外层一般为橘黄色,其他颜色可由供需双方商定。 6.2  外观 管材内外壁不允许有气泡、凹陷、明显的杂质和不规则波纹。管材的两端应平整、与轴线垂直并位于波谷区。管材波谷区内外壁应一体成型,紧密熔接,不应出现脱开分层现象。 6.3  规格尺寸 管材用公称内径(DN内径系列)表示尺寸。 6.3.1  长度 管材有效长度L一般为6m,其他长度由供需双方协商确定。长度不应有负偏差。 6.3.2  尺寸 尺寸应符合表3的要求,且两节管材使用卡箍连接后,切割面之间的距离S应该小于等于表格中规定的数据,如ID200规格的外六边形内圆管材,S≤5。 表3  管材的尺寸                     单位:mm 规格 DN×B×C 平均内径 d.min  最小层压壁厚 e min 最小内层壁厚 e1 min 最大波距 P max 最大结合间隙 S max 100(123×143) 100±1.5 1.8 0.6 33 3.0 150(181×211) 150±2.0 2.3 0.8 44 3.0 175(208×248) 175±2.5 2.5 1.0 66 4.0 200(250×300) 200±2.5 2.5 1.0 88 5.0 6.4 物理力学性能 管材的物理力学性能应符合表4的规定。 表4  管材的物理力学性能 项目 单位 指标 环刚度 (SN16) (kN/m2) ≥16  SN24  ≥24  SN32  ≥32  SN40  ≥40 耐外压负载性能 N ≥4000 环段热压缩力 (SN16) kN ≥0.3  SN24  ≥0.5  SN32  ≥0.65  SN40  ≥0.75 扁平试验 - 试样不应出现破裂、分层或起皮 落锤冲击试验 - 10/10通过 纵向回缩率 % ≤3 维卡软化温度 ℃ ≥135 体积电阻率 Ω·m ≥1×1011 燃烧性能 - V-2 连接密封性 - 0.01MPa水压,在20℃下保持 30min,接头处不应渗水,漏水 导热系数 W/(m·K) ≥1.1 7、试验方法 7.1  状态调节和试验环境 除有特殊规定外,试样按照GB/T 2918的规定,在(23±2)℃条件下对试样进行调节和试验,状态调节时间不应少于24h。 7.2  外观检查 目视检查,内部可用光源照看。 7.3  尺寸测量 7.3.1  平均内径 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 7.3.2  管材外形尺寸 7.3.2.1  六边形对边尺寸 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 7.3.2.2  六边形对角尺寸 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 7.3.3  最小内层壁厚 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 7.3.4  最小层压壁厚 按GB/T 8806的规定,用精度不低于0.02mm的量具测量。 7.3.5  管材长度 按GB/T 8806的规定,用精度为1mm的钢卷尺测量。 7.3.6  最大波距 按图1所示,用精度不低于0.1mm的量具测量。 7.3.7  最大结合间隙 按图4所示,取最大值,用精度不低于0.1mm的量具测量。 7.4  物理力学性能 7.4.1  环刚度 按GB/T 9647测定,取样时切割点应在小圆波峰和六边形成型波峰中间。 7.4.2  耐外压负载性能 7.4.2.1  样品制备 从三根管材上各取(200±5)mm 的管段为试样,在温度为(23±2)℃的标准环境下放置24h。 7.4.2.2  试验设备 能提供试验速度为(5±1)mm/min 的试验设备,其压板最小尺寸不小于200mm。 7.4.2.3  试验步骤 将试样置于试验设备的压板之间,使管材的轴向平行于压板,方向同压缩方向一致。试验速度为(5±1)mm/min,当变形量为试样试验时的压缩初始高度的25%时,记录此时的压缩负荷,试验结果取三个试样的平均值。 7.4.3  环段热压缩力 按GB/T 9647取样,试样放入电热鼓风干燥箱内,经(70±2)℃,1h处理后,从干燥箱中取出试样,放在压缩试验机上进行试验,读取内径压缩3.0%时的力为环段热压缩力,每段试样从烘箱取出至压缩完成均应在2min内完成。取三个试样的实验结果的算术平均值为试验结果。 7.4.4  扁平试验 按GB/T 9647的规定进行。从三根管材上各取(200±5)mm 的管段为试样,试样两端应垂直切平,试验速度为(10±2)mm/min,当垂直方向外径变形量为六边形对边尺寸的50%时,立即卸荷。 7.4.5  落锤冲击 取10个试样进行测定,在23℃环境下预处理2小时,用V形托板,冲击R角处,每个试样冲击一次,冲击高度(2000±10)mm,落锤质量(5.0±0.1)kg。用肉眼观察,试样经冲击后产生裂纹、裂缝或试样破碎判为试样破坏。每个试样冲击一次,10个中10个均不出现破裂、裂纹为合格。 7.4.6  纵向回缩率 按 GB/T 6671中方法B的测定的方法进行。 7.4.7  维卡软化温度  按GB/T1633中A50法规定进行。 7.4.8  体积电阻率 按GB/T 31838.2 的规定进行。 7.4.9  阻燃性能 按GB/T 2408中9试验方法B-垂直燃烧试验测定。 7.4.10连接密封性 按DL/T 802.4中5.10试验方法进行试验。 7.4.11导热系数 按GB/T 22588的规定进行。

Flame-retardant polypropylene boron nitride (PP-BN) heat-conducting hexagonal structural wall pipe

ICS
71.020
CCS
C292
发布
2022-01-05
实施
2022-03-10

5.技术要求 5.1  外观 管材的内外表面应清洁、光滑、不允许有气泡、明显的划伤、凹陷、杂志、颜色不均等缺陷。管端头应切割平整,并与管轴线垂直。 5.2  规格尺寸 规格尺寸及偏差符合表 1 的规定 5.3  方管长度 HPPM方形电力双壁波纹管长度一般为 6.20m,也可以按供需双方的商定执行。HPPM方形电力双壁波纹管长度应包括承口部分的长度,长度极限偏差为长度的+0.5%。 5.4  物理力学性能 HPPM方形电力双壁波纹管的物理力学性能应符合表 2 的要求。 表 2 物理力学性能 项目 单位 指标 耐外压负载性能 N ≥3000 扁平试验 / 垂直方向外形变形量为 40%时,立即卸荷,试样无破裂 落锤冲击试验 / 试样10/10通过,试验内外壁不应有裂缝或破裂 纵向回缩率 % ≤3 维卡软化温度 ℃ ≥135 体积电阻率 Ω·m ≥1×1011 垂直燃烧 / V-2 连接密封性 / 试样无渗漏 6.试验方法 6.1 状态调节 除有特殊规定外,按 GB/T 2918-2018 规定,在(23±2)℃条件下对试样进行状态调节不少于 24h,并在同样条件下进行试验。 6.2  外观 目测HPPM方形电力双壁波纹管的内、外表面和两端面。 6.3  规格尺寸 6.3.1平均内径和极限偏差 按 GB/T 8806-2008 测量平均内径,并计算平均内径极限偏差。 6.3.2方管宽度 按 GB/T 8806-2008 测定,用精度不低于0.1mm的量具测量。 6.3.3方管波峰宽度 按 GB/T 8806-2008 测定,用精度不低于0.1mm的量具测量。 6.3.4方管最小层压壁厚 按 GB/T 8806-2008 测定,并计算层压壁厚极限偏差。 6.3.5方管长度 按 GB/T 8806-2008 测定,用精度不低于1mm的量具测量。 6.4  物理力学性能 6.4.1耐外压负载性能 6.4.1.1  样品制备 从三根管材上各取(200±5)mm 的管段为试样,在温度为(23±2)℃的标准环境下放置 24h。 6.4.1.2  试验设备 能提供试验速度为(5±1)mm/min 的试验设备,其压板最小尺寸不小于200mm。 6.4.1.3  试验步骤 将试样置于试验设备的压板之间,使管材的轴向平行于压板,方向同压缩方向一致。试验速度为(5±1)mm/min,当变形量为试样试验时的压缩初始高度的 25%时,记录此时的压缩负荷,试验结果取三个试样的平均值。 6.4.2扁平试验 从三根管材上各取(200±5)mm 的管段为试样,试样两端应垂直切平,试验速度为(10±2)mm/min,当垂直方向外形变形量为 40%时,立即卸荷。 6.4.3落锤冲击 按 GB/T 14152-2001 规定,取 10 个试样进行测定,在23℃环境下,每个试样冲击一次,冲击高度(2000±10)mm,落锤质量(1.50±0.01)kg。 6.4.4纵向回缩率 按 GB/T 6671-2001 中方法 B 的测定的方法进行。 6.4.5维卡软化温度 按 GB/T 1633-2000中规定的A50法进行,施加负荷为10N。 6.4.6体积电阻率 按 GB/T 31838.2-2019 规定的方法进行。 6.4.7垂直燃烧 按GB/T 2408-2008规定的试验方法B-垂直燃烧试验测定方法进行。 6.4.8连接密封性 按 YD/T 841.1-2016规定的方法进行。 检验规则

Nano-modified polypropylene (HPPM) square electric double-wall corrugated pipe

ICS
71.020
CCS
C262
发布
2022-01-05
实施
2022-03-10



Copyright ©2007-2022 ANTPEDIA, All Rights Reserved
京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号