分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

植物蛋白质组学和糖基化(二)

2019.11.08
头像

王辉

致力于为分析测试行业奉献终身

4. 注释

( 1 ) 每个实验均使用新鲜的 3 mol/L 甲醇- HCl 和硅烷化试剂

( 2 ) 要仔细识别蛋白质印迹,因为 WGA 既能识别 N-糖苷的 GlcNAc,也能识别 O-GlcNAc。

( 3 ) 用于在硝酸纤维素印迹膜上封闭结合位点的溶液应避免糖蛋白污染。所以我们建议在这一步骤中使用 Tween-20 来覆盖硝酸纤维素膜。

( 4 ) 特异性对照:

a. 建议印迹表 25-1 中的蛋白质到硝酸纤维素膜(建议的正对照),获得亲和检测的正对照。

b. 凝集素结合特异性应在 0.3 mol/L 抑制性糖(表 25-1 ) 浓度下进行亲和检测验证。

( 5 ) 可用的抗 O-糖苷抗体有:抗 AGP 抗体:LM2 [ 31,32] 、JIM 4、JIM 13、JIM 15 [32]、JIM 8 [33] 、JIM 14、JIM 15 和 JIM 16 [34];抗伸展蛋白抗体:LM 1 [ 35 ] 、JIM 11、 JIM 12、JIM 20 [36] 和  JIM19 [ 37] 。

( 6 ) 免疫检测的 N-糖苷特异性对照:应验证血清对连接在被测蛋白的 N-糖苷的特异性,可在免疫检测前先对印迹进行温和的高碘酸盐氧化处理,温和高碘酸盐处理会氧化糖苷,并消除糖蛋白上抗苷抗体的识别位点。剩下的信号都是蛋白骨架抗体识别的结果 [ 38 ]。

a. 经明胶饱和处理后,将蛋白质印迹膜浸泡在 100 mmol/L 含 100 mmol/L 过碘酸钠的乙酸钠缓冲液(pH 4.5 ) 中,室温下黑暗处理 1 h,30 min 后更换一次浸泡液。

b. 将蛋白质印迹膜浸泡在含 50 mmol/L 硼氢化钠的 PBS 缓冲液中,室温下处理 30 min。

c. 用 TBS 漂洗蛋白质印迹膜,用含 1% 凝胶 的 TBS 浸泡蛋白质印迹膜 15 min,进行如 25. 3. 2 节 1. 1 ) 所述的免疫检测实验。

( 7 ) 岩藻糖或者木糖的特异性对照:有些蛋白质可被用作 N-糖苷免疫检测的正对照,源自蜂毒的磷脂酶含有 α-1-3岩藻糖残基,不含 β-1-2 木糖。源自玉米 的 PHA-L ( 植物血凝素 L ) 和重组抗生物素蛋白是既含 β-1-2 木糖,也含 α-1-3 岩藻糖的糖蛋白 [ 18,40 , 41 ] 。

( 8 ) 这里介绍的方法需要 1 mg 蛋白质,较少的蛋白质使用量也适用。

( 9 ) 用肌醇做内标。

( 10 ) 由于还原性氨化反应是一种激烈的处理,可能会发生一些蛋白质修饰。为此,有时候最好酶切去除 O-糖苷。

( 11 ) 总的来说,我们实验室不使用化学处理解离糖蛋白上的N - 糖苷。

( 12 ) Nonidet  P40 的作用是结合游离的 SDS

( 13 ) 需要 60~80 mg 的可溶油菜籽蛋白作为初始材料,制备足够跑一张 2D 凝胶的糖蛋白。

( 14 ) α-甲基甘露糖是刀豆蛋白 A 的配体,它将替换固定化凝集素上的糖蛋白。

( 15 ) 在洗脱亲和色谱柱时,我们观察到一个重要的解离物质刀豆蛋白 A。这一解离物质污染了糖蛋白制备物,迫使我们必须同时跑一张分析用 2D 凝胶,另一张 2D 凝胶只上样刀豆蛋白 A。染色后,我们选择只在分析用 2D 凝胶上出现的点,弃除同时在这两张 2D 凝胶上出现的点。

( 16 ) 150 ml 生长 6 天的拟南芥 cgl 突变体细胞培养物大约相当于 10 g 植物材料。

( 17 ) 细胞壁结合蛋白的去除是纯化的第一步,因为这些蛋白不含 O-位 N-乙酰葡糖胺。如果需要就应将这一纯化步骤包括在这个方法中。

( 18 ) 自由 O-位 N-乙酰葡糖胺是 WGA 的配体,它将替换固定凝集素上的糖蛋白。


参考文献

1.  Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.-C.,  Gomord,V., and Faye, L. (1998) N-glycosylation biosynthesis in plants:  recent developments and future trends.  Plant Mol. Biol.3, 31-48.

2.  Cho, Y. P. and Chrispeels, M . J. (1976) Serine-O-galactosyl linkages  in glyco- peptides from carrot cell wall.  Phytochemistry  15,  165-169.

3.  Matsuoka, K., Watanabe N., and N a k a m u r a K. (1995) O- glycosylation of a precursor to a sweet potato protein, sporamin, expressed in tobacco cells.   Plant J.8, 877-889.

4.  Faye, L., Boulaflous, A., Benchabane, M., Gomord, V., and Michaud, D.  (2005) Protein modifications in theplant secretory pathway: current  states and practical implications in molecular pharming.  Vaccine  23,   1770-1778.

5.  Schowalter, A. M . (1993) Structure and function of plant cell wall  proteins.  PlantCell  5,  9-23.

6.  Moore, P. J., Swords, K. M . M., Lynch, M . A., and Staehelin, L. A.  (1991) Spatial organization of the assembly pathways of glycoproteins and  complex polysaccharides in the Golgi apparatus of plants.  J. Cell Biol.  11 2 , 467-479.

7.  Robinson, D., Andreae, M., and Sauer, A. (1985) Hydroxyproline-rich  glycoprotein biosynthesis: a comparison with that of collagen, in  Biochemistry   of PlantCell  Walls(Brett, C. T. and Hillman, J. R., eds.), Cambridge  University Press, Cambridge, U K , pp. 155-176.

8.  Schowalter, A. M . (2001) Arabinogalactan-proteins: structure,  expression and function.  Cell Mol. Sci.58, 1399-1417.

9.  Hart, G. (1999) T h e O - G l c N A c modification, in  Essentials  o  f Glycobiology(Varki, A., C u m m i n g s , R., Esko, J., Freeze, H.,  Hart, G., and Marth, J., eds.) Cold Spring Harbor Laboratory Press, Cold  Spring Harbor, N Y , pp. 183-194.

10.  Slawson, C. and Hart, G. (2003) D y n a m i c interplay between O - G  l c N A c and (9-phosphate: the sweet side of protein regulation. Curr.   Opin.  Struct.  Biol.13, 631-636.

11.  Jacobsen, S. E., Binkowski, K. A., and Olszewski, N. E. (1996) S P I  N D L Y , a tetratricopeptide repeat protein involved in gibberellin  signal transduction in Arabidopsis. Proc. Natl. Acad. Sci.  USA93, 9292- 9296.

12.  Thornton, T. M., Swain, S. M., and Olszewski, N. E. (1999)  Gibberellin signal transduction presents ellipsis the S P Y w h o O - G l  c N A c M me.  Trends Plant Sci.4, 424-428.

13.  Hartweck, L.  M.,  Scott C.  L.,  and Olsewski, N.  E.  (2002) T w o   O-linked N-acetylglucosamine transferase genes of  Arabidopsis  thalianaL.  Heynh. have overlapping functions necessary for gamete and seed  development.  Genetics161, 1279-1291.

14.  Heese Peck, A., Cole, R. N., Borkhsenious, O. N., Hart, G. W., and  Raikhel, N. V. (1995) Plant nuclear pore complex proteins are modified by  novel oligosaccharides with terminal A^-acetylglucosamine.  Plant Cell7, 1459-1471.

15.  Heese Peck, A. and Raikhel, N. V. (1998) A glycoprotein modified with  terminal N-acetylglucosamine and localized at the nuclear rim shows  sequence similarity to aldose-1-epimerases.  Plant Cell10, 599— 612.

16.  Holst, B., Bruun, A. W., Kielland-Brandt, M . C., and Winther, J. R.  (1996) Competition between folding and glycosylation in the endoplasmic reticulum.   EMBOJ.15, 3538-3546.

17.  Faye, L., Sturm, A., Bollini, R., Vitale, A., and Chrispeels, M . J.  (1986) The position of the oligosaccharide side-chains of phytohemagglutinin and their  accessibility to glycosidases determines their subsequent processing in the  Golgi.  Eur J.Biochem.158, 655— 661.

18.  Bardor, M., Loutelier-Bourhis, C., Marvin, L., et al. (1999) Analysis  of plant glycoproteins by matrix-assisted laser desorption ionisation mass  spectrometry: application to the A^-glycosylation of bean  phytohemagglutinin. Plant Physiol.Biochem.37, 319-325.

19.  Bardor, M., Faye, L., and Lerouge, P. (1999) Analysis of the iV- glycosylation of recombinant glycoproteins produced in transgenic plants.  Trends  Plant  Sci.4, 376-380.

20.  Faye, L. and Chrispeels, M . J. (1985) Characterization of A^-linked  oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of  the blots with glycosidases.  Anal. Biochem.149, 218-224.

21.  Faye, L., G o m o r d , V., Fitchette-Laine, A.-C., and Chrispeels, M  . J. (1993) Affinity purification of antibodies specific for Asn-linked glycans containing  al->3 fucose or (3l->2 xylose.  Anal. Biochem.209, 104-108.

22.  Fitchette-Laine, A.-C., G o m o r d V., Cabanes M., et al. (1997)  A^-glycans harboring the Lewis a epitope are expressed at the surface of plant cells.   Plant J.12, 1411-1417.

23.  Tomiya, N., Kurono, M., Ishihara, H., et al. (1987) Structural  analysis of A^-linked oligosaccharides by a combination of glycopeptidase,  exoglycosidases, and high-performance liquid chromatography,  Anal. Biochem.163, 489-499.

24.  O gawa, H., Hijikata, A., A m a n o , M., et al. (1996) Structures  and contribution to the antigenicity of oligosaccharides of Japanese cedar   {Cryptomeria japonica)pollen allergen  Cry j I: relationship between the  structures and antigenic epitopes of plant /'/-linked complex-type  glycans.  Glycoconjugate J.  13,  555-566.

25.  Linsley, K. B., Chan, S. Y., Chan, S., Reinhold, B. B., Lisi, P. J.,  and Reinhold, V. N. (1994) Applications of electrospray mass spectrometry  to erythropoietin  Nand O-linked glycans.  Anal. Biochem.  219,  207-217.

26.  Jesperson, S., K o edam, J. A., Hoogerbrugge, C. M., Tjadn, U. R., V  a n der Greef, J., and V a n den Brande, J. L. (1996) Characterization of  O-glycosylated precursors of insuline-like growth factor II by matrix-assisted laser  desorption/ioniza- tion mass spectrometry.  J. Mass Spectrom.  31,  893- 900.

27.  Hanover, J. A., Cohan, C. K., Willingham, M . C., and Park, M . K.  (1987) Olinked N-acetylglucosamine is attached to proteins of the nuclear  pore.  J.  Biol.

28.  Roquemore, E. P., Chou, T.-Y., and Hart, G. W . (1994) Detection of  O-linked A^-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear  proteins.  MethodsEnzymol.  230, 443-460.

29.  von Schaewen, A., Sturm, A., O'Neill, J., and Chrispeels, M . J.  (1993) Isolation of a mutant  Arabidopsisplant that lacks N-acetyl  glucosaminyl transferase I and is unable to synthesize Golgi-modified  complex ^/-linked glycans.  Plant Physiol.1 02 ,  1109-1118.

30.  Bird, C. R., Gearing, A. J. H., and Thorpe, R. (1988) T he use of  Tween - 2 0 alone as  a blocking agent for the  immunoblotting can cause  artefactual results. J. Immunol. Methods  1 0 6,  175-179.

31.  Smallwood, M., Yates, E. A., Willats, W . G. T., Martin, H., and  Knox, J. P. (1996) I m m u n o c h e m i c a l  comparison  of  membrane- associated  and  secreted arabinogalactan-proteins in rice and carrot.   Planta  1 98 ,  452-459.

32.  Yates, E. A., Valdor, J.-F., Haslam, S. M., et al. (1996)  Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein  monoclonal antibodies.  Glycobiology 6,  131-139.

33.  Pennell, R. I., Janniche L., Kjellbom, P., Scofield, G. N., Peart, J.  M., and Roberts, K. (1991) Developmental regulation of a plasma m e m b r a n e  arabinogalactan protein epitope in oilseed rape flowers.  Plant Cell  3,   1317-1326.

34.  Knox, J. P., Linstead, P. J. , Peart, J. , Cooper, C., and  Roberts, K. (1991) Develop- mentally-regulated epitopes of cell surface  arabinogalactan proteins and their relation to root tissue pattern  formation.  Plant J.1, 317-326.

35.  Smallwood, M., Martin, H., and Knox, J. P. (1995) A n epitope of rice  threonine- and hydroxyproline-rich glycoprotein is c o m m o n to cell  wall and hydrophobic plasma-membrane glycoproteins.  Planta  1 9 6,  510- 522.

36.  Smallwood, M., Beven, A. Donovan, N., et al. (1994) Localization of  cell wall proteins in relation to the developmental anatomy of the carrot  root apex.  Plant J.5, 237-246.

37.  Knox, J. P., Peart, J., and Neill, S. J. (1995) Identification of  novel cell surface epitopes using a leaf epidermal-strip assay system.   Planta  1 9 6, 266-270.

38.  Laine, A.-C. and Faye, L. (1988) Significant immunological cross- reactivity of plant glycoproteins.  Electrophoresis  9 ,  841-844.

39.  Kubelka, V., Altmann, F., Staudacher, E., et al. (1993) Primary  structures of the A-linked carbohydrate chains from honeybee v e n o m phospholipase A 2.  Eur.  J.Biochem. 213,1193-1204.

40.  Vitale, A., Warner, T. G., and Chrispeels, M . J. (1984)  Phaseolus  vulgarisphytohemagglutinin contains high-mannose and modified oligoasaccharide chains.  Planta160, 256— 263.

41.  Bardor, M., Loutelier-Bourhis, C., Paccalet, T., et al. (2003)  Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a  N-glycosylation that is homogeneous and suitable for glyco-engineering  into a human-compatible structure,  Plant Biotech. J.1, 451-462.

42.  Shibuya, N., Goldstein, I. J., van D a m m e , E. J. M., and Peumans,  W . J. (1988) Binding properties of a mannose-specific lectin from the  snowdrop  (Galanthusnivealis)bulb.  J. Biol.  Chem.263, 728-734.

43.  Animashaun, T., M a h m o o d , N, Hay, A. J., and Hughes, R. C.  (1993) Inhibitory effect of novel mannose-binding lectins on HIV- infectivity and syncitium formation.  Antiv. Chem.  Chemother. 4, 145— 153.

44.  Nagata, Y. and Burger, M . M . (1974) W h e a t germ agglutinin.  Molecular characteristics and specificity for sugar binding.  J. Biol. Chem.249, 3116- 3122.

互联网
文章推荐