分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

选择性微电极在植物生理学研究中的应用(五)

2020.7.27
头像

王辉

致力于为分析测试行业奉献终身

7  展望

选择性微电极技术能用于直接并灵敏地观察植物体对矿质元素的需求,研究者可利用选择性微电极技术进行对植物某种离子或高或低的吸收的品种的筛选,还可制定出与植物需求相适应的环境的营养水平;能及时准确地探测到的光、温、水涝、盐分引起的植物体离子或分子信息的微小变化,能成为预测植物受到逆境胁迫最直观、最灵敏的生理指标测定方法之一;超灵敏的选择性微电极可以应用于信号传递过程中有关离子或分子的微量变化的信号探测;还可用于基因组后期研究所面临的那些未知的或者人工表达的蛋白质功能的研究鉴定,等等。

近年来,在分析化学上对离子选择电极取得了很大进展,测定下限得到了很大提高,如Ca2+等可以达到10-9 mol/L水平(Michalska 2006),以及光纤维微电极的发展(Wolfbeis 2006)、纳米微粒传感器的进展,特别是碳纤维微电极伏安法的进展为细胞生物化学物质的交换等研究产生重大影响。选择性微电极技术在测定植物体内信号物质(如NO、H2O2、CO),磷酸盐和Cu2+、Zn2+等微量元素也取得一些新的进展(Bakker和Qin 2006),使该方法在植物生理上的研究日益完善。

总之,由于选择性微电极技术是非损伤性地分别记录活体植物细胞表面的离子或分子移动的原初响应机制,能让研究者在真正意义上实现与活体植物器官不同细胞的直接对话,能让研究者实时了解植物体随环境变化发生的变化及植物(细胞)所做出的反应诱发所做出的反应的原因。随着旭月(北京)科技有限公司将“非损伤微测技术”引进到国内,选择性微电极理论研究的深入和探测技术的不断发展,必将更准确、更全面地揭示植物体离子、分子信息与植物特定功能之间的关系,为国内植物生理研究者揭示植物体内在的生命活动规律提供好的技术手段。

 

致谢:北京林业大学尹伟伦院士对本文的热情支持和指导。

 

参考文献

Bakker E,Qin Y (2006). Electrochemical sensors. Anal Chem 78:3965-3984

Berman HJ,Hebert NC (1974). Ion-selective microelectrodes. Plenum Press,New York and London

Bjorkman T,Cleland RE (1991). The role of extracellular free-calcium gradients in gravitropic signaling in maize root. Planta 185:379-384

Bowling DFT (1972). Measurement of profiles of potassium activity and electrical potential in the intact root. Planta 108:147-151

Bush DS (1995). Calcium regulation in plant cells and its role in signalling. Annu Rev Plant Physiol Plant Mol Biol 46:95-112

Carden DE, Diamond D, Miller AJ (2001). An improved Na+-selective microelectrode for intracellular measurements in plant cells. J Exp Bot 52:1353–1359

Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003). Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676-683

Colmer TD, Bloom AJ (1998). A comparison of NH4+ and NO3- net fluxes along roots of rice and maize. Plant Cell Environ 21:240-246

Felle H (1989). Ca2+-selective microelectrodes and their application to plant cells and tissues. Plant Physiol 91: 1239-1242

Felle HH, Kiondoros E´, Kondorosi A´,Schultze M (2000). How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol 124:1373–1380

Gilliham M, Sullivan W, Tester M,Tyerman SD (2006). Simultaneous flux and current measurement from single plant protoplasts reveals a strong link between K+ fluxes and current, but no link between Ca2+ fluxes and current. Plant J 46:134-44

Hanstein SM and Felle HH (2002). CO2-triggered  chloride release from guard cells in intact fava bean leaves. kinetics  of the onset of stomatal closure. Plant Physiol 130:940–950

Halperin SJ, Kochian LV, Lynch JP (1997). Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New Phytol 135:419-427

Henriksen GH, Bloom AJ, Spanswick RM (1990).  Measurement of net fluxes of ammonium and nitrate at the surface of  barley roots using ion-selective microelectrodes. Plant Physiol 93:271-280

Henriksen GH,Spanswick RM (1993). Investigation of the apparent induction of nitrate uptake in barley(Hordeum vulgare L.) using NO3--selective microelectrodes: Modulation of coarse regulation of NO3- uptake by exogenous application of downstream metabolites in the NO3- assimilatory pathway. Plant Physiol 103:885-892

Hinke JAM (1959). Glass microelectrode for measuring intracellular activities of sodium and potassium. Nature

184:1257-1258

Huang JW, Shaft JE, Grunes DL, Kochian LV (1992).  Aluminum effects on calcium fluxes at the root apex of aluminum  tolerant and aluminum sensitive wheat cultivars. Plant Physiol 98:230-239

Jia LJ(贾莉君), Fan XR(范晓荣),Yin XM(尹晓明), Cao Y(曹云),Shen QR(沈其荣) (2005a).  Remobilization of nitrate in rice leaf vacuoles measured with  double-barrelled nitrate-selective microelectrodes. Sci Agric Sin (中国农业科学),38(7):1379-1385(in Chinese)

Jia LJ(贾莉君), Fan XR(范晓荣),Yin XM(尹晓明), Cao Y(曹云),Shen QR(沈其荣)  (2005b). Measurement of nitrate activity in leaf cells of Chinese  cabbage in vivo using double-barreled nitrate selective microelectrodes.  Acta Pedolog Sin (土壤学报),42(3):447-452(in Chinese)

Knowles A, Shabala S (2004).  Overcoming the problem of non-ideal liquid ion exchanger selectivity in  microelectrode ion flux measurements. J Membr Biol 202:51–59

Kunkel JG, Lin LY, Xu Y(许越), Prado AMM, Feijó JA, Hwang PP. Heper PK (2001).  The strategic use of good buffers to measure proton gradients about  growing pollen tubes. Cell Biology of Plant and Fungal Tip Growth. IOS  Press ,Amherst:81-94

Kunkel JG, S Cordeiro, Y(J) Xu(许越), AM Shipley and JA Feijo(2005) The use of non-invasive ion-selective microelectrode techniques for the study of plant development. Chapter V in Plant Electrophysiology- Theory and Methods ed. by AG Volkov, Springer-Verlag, Berlin/Heidelberg, pp 109-137.

Kühtreiber WM and Jaffe LF (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565–1573

Michalska A (2006).  Optimizing the analytical performance and construction of ion-selective  electrodes with conducting polymer-basedion-to-electron transducers.  Anal Bioanal Chem 384:391-406

Newman IA, Kochian LV, Grusak MA, Lucas WJ (1987). Fluxes of H+ and K+ in corn roots. Characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol 84:1177-1184

Newman IA (2001).  Ion transport in roots: measurement of fluxes using ion-selective  microelectrodes to characterize transporter function. Plant Cell Environ  24:1–14

Pang JY,Newman I,Mendham N,Zhou M,Shabala S (2006). Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

Plassard C, Guérin-Laguette A, Véry AA, Casarin V, Thibaud JB  (2002). Local measurements of nitrate and potassium fluxes along roots  of maritime pine. Effects of ectomycorrhizal symbiosis. Plant Cell  Environ 25:75–84

Piñeros MA, Shaff JE, Kochian LV (1998).  Development, characterization, and application of a cadmium-selective  microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116: 1393–1401

Qi Q(齐琼)(2006). Non-invasive Micro-sensing Technique – An Systematic Integration of Cutting-edge Technologies from Multiple-disciplines. Science Times (科学时报). Vol.33 May 26.

Ryan PR, Newman IA, Shields B (1990). Ion fluxes in corn roots measured by microelectrodes with ion-specific liquid membranes. J Memb Sci 53:59-69

Ryan PR, Shaft JE, Kochian LV (1992).  Aluminum toxicity in roots.Correlation among ionic currents,ion  fluxes,and root elongation in aluminum-sensitive and aluminu-tolerant  wheat cultivars. Plant Physiol 99:1193-1200.

Shabala SN, Newman I (1997a). Proton and calcium flux oscillations in the elongation region correlate with root nutation. Physiol Plant 100:917-926

Shabala SN, Newman I (1997b). H+  flux kinetics around plant roots after short-term exposure to low  temperature,identifying critical temperatures for plant chilling  tolerance. Plant Cell Environ 20:1401-1410

Shabala S (2000). Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825-837

Shabala S, Babourina O, Newman I (2000). Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51:1243-1253

Shabala SN, Lew RR (2002). Turgor regulation in osmotically stressed Arabidopsis  epidermal root cells: Direct support for the role of inorganic ion  uptake as revealed by concurrent flux and cell turgor measurements.  Plant Physiol 129:290-299.

Shabala S, Hariadi Y (2005).  Effects of magnesium availability on the activity of plasma membrane  ion transporters and light-induced responses from broad bean leaf  mesophyll. Planta 221:56-65

Shabala S, Shabala L, Volkenburgh EV, Newman I (2005). Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369-1378

Shabala S, Shabala L,Gradmann D,Chen Z,Newman I,Mancuso S (2006). Oscillatons in plant membrane transport:model predictions,experimental validation,and physiological implications. J Exp Bot 57:171-184

Sykoνά E, Hnίk P, Vyklický L (1981). Ion-selective microelectrodes and their use in excitable tissues. Plenum Press,New York and London.

Taylor AR, Bloom AJ (1998). Ammonium,nitrate, and proton fluxes along the maize root. Plant Cell Environ 21:1255-1263.

Tegg RS, Melian L, Wilson CR, Shabala S (2005).  Plant cell growth and ion fluxe responses to the streptomycete  phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by  the non-invasive MIFE technique. Plant Cell physiol 46:638-648

Tyerman SD, Beilby M, Whittington J, Justwono U, Newman I, Shabala S (2001).  Oscillations in proton transport revealed from simultaneous  measurements of net current and net proton fluxes from isolated root  protoplasts:MIFE meets patch-clamp. Aust J Plant Physiol 28:591-604

Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y(许越), Allen N, Bibikova TN,Gilroy S, Bankaitis VA (2005). A  Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes  membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812

Walker D J, Smith SJ, Miller AJ (1995). Simultaneous measurement of intracellular pH and K+ or NO3- in barley root cells using triple-barreled ion-selective microelectrodes. Plant Physiol 108: 743-751

Wolfbeis OS (2006). Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859-3874

Xu Y(许越), Qiu ZS(邱泽生)  (1993). Patch-clamp technique and its applications to and prospects for  the studies of higher plant cells. Plant Physiol Communi (植物生理学通讯), 29(3):169~174(in Chinese)

Xu Y(许越), Sun T, Yin LP (2006). Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48(7):823-831

Yin XM(尹晓明), Fan XR(范晓荣), Jia LJ(贾莉君), Shen QR(沈其荣) (2005). Membrane potential changes of epidermal cells in the root tips of rice cultivars during the uptake of nitrate. Acta Pedol Sin (土壤学报),42(2):278-285(in Chinese)

Zhu JY(朱俊英),Yan H(闫慧),Yin WL(尹伟伦),Gao RF(高荣孚) (2006).  Protoplasts isolation and patch clamp whole cell recording of Hippophae  rhamnoides cotyledon. 2006 Doctoral forum of China(2006年全国博士生学术论坛论文集) 1250-1256(in Chinese)

Zivanovic DB,Pang J,Shabala S  (2005). Light-induced transient ion flux responses from maize leaves  and their association with leaf growth and photosynthesis. Plant Cell  Environ 28:340-352

Application of Selective Microelectrode in Plant Physiological Research

ZHU Jun-Ying1, GAO Rong-Fu 1, XU Yue2,3*

1College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China; 2Xu-Yue(Beijing)Science & Technology Company Limited, Beijing 100080; 3Vibrating Probe Facility, Biology Department, University of Massachusetts at Amherst, MA 01003, USA

Abstract: Selective  microelectrode technique, known as an electrophysiological approach,  can be used to measure directly specific information on ion or molecule  distribution and movement both inside and outside of living organelle,  biological cells, tissue and organs. It has several advantages over  other methods in measuring ionic or molecular information, e.g. easy to  handle, fast response, high sensitivity (10-12 molcm-2s-1)  and non-invasive to the samples in addition to continuous measurement  and automatic monitoring. Microscopic-scale selective electrode (with a  tip diameter of 0.5~3 μm)can  be used to measure net fluxes of ions or molecules outside of growing  biological cells, tissues and organs, to measure both activities of ions  or molecules and membrane potential inside of growing organelle and  biological cells.Thus, it has many applications in various research  fields.The technical principle of design and use of selective  microelectrode and its progress and development prospect in plant  physiological research are summarized.

Key words:ionic fluxes; molecular fluxes; ionic activity; molecular activity; selective microelectrode; plant

spacer.gif 

This work was supported by the National Natural Science Foundation of China(Nos.30371143&30571472)

*Corresponding author(E-mail: yue@xu-yue.com, Tel: 86-10-82622628)


互联网
仪器推荐
文章推荐