分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

基因的转移与重组体的筛选和鉴定-2

2020.9.08
头像

王辉

致力于为分析测试行业奉献终身

二、重组DNA分子转入真核细胞

1. 根癌农杆菌Ti质粒介导法

农杆菌介导的Ti质粒载体转化法是目前研究最多、机制最清楚、技术方法最成熟的基因转化途径。迄今为止约8096的转基因植株都是利用农杆菌介导转化系统获得的。

农杆菌是一类土壤习居菌,革兰氏染色呈阴性,能感染双子叶植物和裸子植物,而对绝大多数单子叶植物无侵染能力。植物受伤后,伤口处细胞分泌大量的酚类化合物,如乙酰丁香酮(AS)和羟基乙酰丁香酮(OH-As),它们是农杆菌识别敏感植物的信号分子。具有趋化性的农杆菌移向这些细胞,并将其Ti质粒上的T-DNA的转移至细胞内部。根据这一性质,将待转移的目的基因组入Ti质粒载体,通过农杆菌介导进人植物细胞,与染色体DNA整合,得以稳定维持或表达。


步骤:(1)外植体选择与预培养;(2)接种活化的农杆菌工程菌;(3)共培养;(4)选择培养;(5)转化植株再生

2. 高压电穿孔法

利用脉冲电场将DNA导入受体细胞的方法叫做高压电穿孔法。利用这种方法,可以将DNA导入动、植物及细菌细胞。具有简单方便、对细胞毒性低以及转化效率高等优点。

(1)标准的操作程序——将高浓度的含有克隆基因的质粒DNA加到原生质体的悬浮液中,然后置于200~600V/cm的电场下进行电脉冲刺激。经过如此电穿孔处理的原生质体在组织培养基中培养1~2星期之后,选择已经捕获了转化DNA的细胞,作进一步的继续培养,以便获得再生植株。

应用这种方法已成功地转化了玉米和水稻的原生质体,其转化效率在0.1%~1.0%之间。

(2)影响电穿孔导入DNA效率的因素:

① 外加电场的强度:250~750 V/cm较宜;

② 电脉冲的时间:20~100ms;

③工作温度:对不同类型细胞所要求的条件不同,可以在0℃至室温(25℃)之间进行选择;

④ DNA的构象和浓度:线性 DNA比环状 DNA要好,浓度控制在1~ 40 μg/mL。

⑤工作缓冲液的离子成分:也对其DNA导入效率发生作用,一般用盐溶液悬浮细胞要比用非离子溶液更易DNA的导入。

3. 聚乙二醇介导的原生质体转化法

这种方法常用于转化酵母细胞以及其他真菌细胞。

活跃生长的细胞或菌丝体用消化细胞壁的酶处理变成球形体后,在适当浓度的聚乙二醇6000(PEG-6000)的介导下,将外源DNA转化入受体细胞中。

4. 磷酸钙或DEAE一葡聚糖介导的转染

这是将外源基因导入哺乳类细胞中进行瞬时表达的常规方法。

将被转染的DNA同正在溶液中形成的磷酸钙微粒共沉淀后通过内吞作用进入受体细胞。对于DEAE-葡聚糖作用的机理尚不清楚,可能是其与DNA结合从而抑制核酸酶的作用或与细胞结合从而促进DNA的内吞作用。

5. 原生质体融合

通过带有多拷贝重组质粒的细菌原生质体同培养的哺乳细胞直接融合。经过细胞膜融合,细菌内容物转入动物细胞质中,质粒DNA被转移到细胞核中。
6. 脂质体法

将DNA或RNA包裹于脂质体内,然后进行脂质体与细胞膜融合将基因导入。

脂质体是由磷脂组成的膜状结构,用它包装外源DNA分子,然后与植物原生质体共保温。于是脂质体与原生质体膜结构之间发生相互作用,尔后通过细胞的内吞作用而将外源DNA高效地纳入植物的原生质体。

这种方法具有多方面的优点,包括可保护DNA在导入细胞之前免受核酸酶的降解作用,降低了对细胞的毒性效应,适用的植物种类广泛,重复性高,包装在脂质体内的DNA可稳定地贮藏等。用此法转化水稻原生质体的效率可达14%,并得到了转基因的再生植株。

7. 显微注射法

借助显微镜将外源DNA直接注射到受体细胞的方法。适用于此种方法的植物样品包括原生质体、游离的细胞,以及诸如愈伤组织、分生组织和胚胎组织等多细胞结构。

在显微注射的实际操作中,受体细胞或组织是被固定在褐藻酸钠或琼脂糖等特定载体上,然后通过显微操作器,将转化的外源DNA直接注射到受体细胞核中去。由于一些重要的禾本科粮食作物均为单子叶的,在原生质体再生和Ti质粒的转化方面都存在着相当的困难,所以对此类植物来说,DNA的直接注射法具有特别重要的实用价值。

本法的一个突出优点是转化频率高,可达60%以上,但操作困难,需要经过特殊训练的专门技术人员才能迸行。

8. 颗粒轰击(particle bombardment)技术

颗粒轰击技术是将基因转移到细胞或组织中去的通用方法,也就是平常所说的用基因枪实现基因转移的方法。

将DNA包被在金或钨的微粒中,然后用基因枪将DNA包被的颗粒直接转移到原位组织、细胞乃至细胞器中去。这一技术目前广泛用于植物基因工程、基因治疗以及基因(DNA)免疫等研究。

生物弹击法的操作对象可以是完整的细胞或组织,突破了基因转移的物种界限,也不必制备原生质体,实验步骤比较简单易行,具有相当广泛的应用范围,已经成为研究植物细胞转化和培养转基因植物的最有效的手段之一。

第二节 基因重组

将目的基因插入载体的过程,即基因重组(gene recombination),其基本过程包括:首先在目的目的基因和载体两端造成切口,然后依赖于双链DNA粘性末端单链序列的互补结合和DNA连接酶将切口补上。这一步的实质就是将两种DNA在体外进行酶促连接,最终获得一个重组子。一般连接反应中外源DNA与载体的比例采用3:1,4:1或5:1。

不同来源、性质的外源片段采用的连接方式不同。常采用的连接方法有:粘末端连接、平端连接法、人工接头法和同聚物接尾法。

一、粘末端连接

1. 全同源粘性末端连接

如果目的序列与载体两端具有相同的限制内切酶位点,则同一限制性核酸内切酶酶切后在目的基因与载体两端产生完全相同的粘性末端,在降低温度退火时,能重新互补结合,在DNA连接酶催化下,目的序列与载体DNA连接,实现基因重组,称为全同源粘性末端连接。另外,不同的限制性内切酶,如果产生的粘性末端相同,也同样用此方法连接。

该连接方法的优缺点为:

优点:该方法是最方便的克隆方法,其连接效率高,一般采用低浓度酶在低于16度,高浓度ATP的情况下进行连接。

缺点:容易出现载体自身环化、双向插入(即目的基因以两种方向插入载体和多拷贝插入的现象,从而在转化后出现高背景,使得筛选更为困难。双向插入尽管对基因克隆无影响,却会影响基因的表达。采用碱性磷酸酶事先对载体DNA进行去磷酸化处理,可有效避免载体自身环化现象;建立连接体系时,若将目的基因和载体DNA的摩尔数控制在2~3:1,则可有效减少多拷贝插入的问题。


互联网
仪器推荐
文章推荐