分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

史密斯圆图的一种球面表示法(二)

2020.9.28
头像

王辉

致力于为分析测试行业奉献终身

史密斯圆图的扩展方法

复数形式的阻抗Z=R+jX 表示在图3 的X-Y 平面上。在这个图形中,使用字母来代表不同点的阻抗。A= -∞+0j,B= -50+0j,C=0+0j,D=50+0j 以及E=∞+0j。同样F=0-∞j,G=0-50j,H=0+50j 以及J=0+∞j。此外,R=50Ω 是用垂直虚线画出,X=50Ω 是用水平横虚线画出的。可以看出在X-Y 平面的左半边,R 小于零(因此可以表示负电阻),X-Y 平面的右半边代表正的电阻。将阻抗平面进行转换就生成了图4 的史密斯圆图。坐标体系转换的详细内容见[1]。从图4 可以看出,点E,F 和J现在都在圆周的右边。代表电阻和感抗为零的原点C 是在圆周的左边。而代表-50j 的电容和+50j 的电感的G 和H 则分别在圆周的底部和顶端。现在含有正实部半边的阻抗面(R>0)是在组成史密斯圆图的圆周内,而含有负实部半边的阻抗面(R<0)则在圆周之外。

图3 所示的是代表了电阻为常数和感抗为常数时的阻抗虚线,也同样显示在图4 中。遗憾的是,在系统坐标变换时,具有负实部半边的阻抗域部分被扩展了。所以,采用史密斯圆图来处理负阻抗就变得很棘手。

20180611025641818.jpg

图3、阻抗平面

20180611025652512.jpg

图4、按照史密斯的方法,将正实部的阻抗平面转换到圆内

一个能将含有负实部半边的阻抗平面域压缩为易于处理的尺寸范围的可行方法是生成两个肩并肩的史密斯圆图[6],一个圆图处理含有正实部半边的阻抗域,另一个处理含有负实部半边的阻抗域。这两个肩并肩的史密斯圆图可以帮助工程师一眼就能看到整个阻抗范围。图5 便是这样一个例子。

20180611025706181.jpg

图5、一个肩并肩的可覆盖整个阻抗平面的史密斯圆图(图形由RF Café2002 提供)

肩并肩史密斯圆图的生成是通过采用2 个坐标变换来实现的,一个变换是在阻抗平面的右边,即史密斯已经完成了的,另一个在左边,是含有负电阻半边的阻抗平面部分。

参考图3,可以看出在Y 轴上的点F,G,H 和J 在y 轴上从而组成了阻抗平面2 个半边的边界线。因此,在使用2 个坐标变换来生成2 个史密斯图时,这些点显示在对偶处。例如,对G 来说,产生图6 的对偶点G 和G´。因此这种方法的缺点是在两个图中,每个图的边界存在不连续性。例如,+50jΩ 同时出现在两个史密斯圆图中,它们之间存在一个间隔。

20180611025718171.jpg

图6、将整个阻抗平面转换为两个肩并肩的圆

这个问题的解决办法之一是想像出两个背靠背的史密斯圆图,每个史密斯圆图的外边界相重叠。这样一个例子可以想像为将具有正实部的阻抗和具有负实部的史密斯圆图印刷在乒乓球拍的两面。但是从一面变换到另一面时,同样没有一个平滑的过渡。这样一来,设计工程师们就需要反复地将球拍翻来翻去。

在过去的许多年中,我将传统的史密斯圆图进行扩展来帮助自己理解射频领域中像振荡器设计以及放大器的稳定性这类涉及到负阻抗的问题。

史密斯圆图的球面扩展形式

为了生成球形的史密斯圆图,需将图3 所示的整个阻抗域包围在球体的表面。见图7。图3 中标记的点也同样地标在了球面上。可以看出,图3 的原点(点C)现在是在球体的左边。其归一化的坐标(x,y,z)为(-1,0,0)。(注意,为了方便起见,对图3 的原点作了x=-1 的偏移。)点A,E,F 和J,即在x 和y 轴上阻抗趋于正无穷大和负无穷大的点,现在的坐标都为(1,0,0)。代表-50Ω 和+50Ω 的点B 和D,现在分别在点(0,0,-1)和(0,0,1)处。类似地,代表-50 j 和+50 j 的点G,H,现在分别在(0,-1,0)(0,1,0)处。

20180611025729885.jpg

图7、转换到球体的表面后的阻抗平面

在这个新形式的史密斯圆图中,阻抗为0 和无穷时的点在x 轴上。从Z 轴的正方向去看球体,可以看到一个类似于传统的史密斯圆图。当然,由于球面的曲线特性,这个圆周的形状似乎有些变形。当把阻抗平面映射到球面上时,整个平面都在一个易于处理的区域内,而且正电阻到负电阻的过渡可以平滑连续地进行。


互联网
仪器推荐
文章推荐