分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

史密斯圆图的一种球面表示法(三)

2020.9.28
头像

王辉

致力于为分析测试行业奉献终身

Z>0 的半球表面含有所有具有正电阻的阻抗,Z<0含有所有具有负电阻的阻抗。类似地,y>0 的半球含有感抗阻抗,y<0 的半球含有容抗阻抗。只有在球面上的点才有意义;在球体内的点则无关紧要。

现在球形的史密斯圆图已经建成了,正如2-D 史密斯圆图一样,我们可以考虑不同阻抗的表示方式。

首先,电阻为常数和感抗为常数的线可以先画出来。这些线形成了一系列封闭的圆周,起始和中止于点(1,0,0)。例如,+50,+50j,-50,-50j 这些常数电阻和感抗线都从点AEFJ(北极)开始,再回到起点前,跨经点D,H,B 和G(在赤道上)。画出其它值的电阻和电抗线使其类似于2-D 史密斯圆图。见图8。图8(a)是从南极(z=0)看过去的球形史密斯图,而图8(b)是从北极(z=∞)看过去的史密斯球。

20180611025740828.jpg

图8、画有常数电阻和感抗的球形史密斯圆图 (a)从南极看过去的球体(b)从北极看过去的球体

我们还可以考虑将常数Q(品质因数)的线画在标准史密斯圆图上。这会形成阻抗从零到无穷大的一系列弧线。当Q=0 时(理想的电阻),弧线便成为一条从零到无穷大的直线,当Q 为无穷大时(一个理想的电感或电容),弧线是沿着史密斯图的圆周线的。在球形的史密斯圆图上,Q 为常数的线便形成了从北极Z=无穷大到南极Z=0 的弧线。见图9。在x-y 平面上的Q 等值的圆周上具有一个零值,同时在x-y 平面上的具有一个Q 为无穷大的Q 等值圆周。使用球形史密斯圆图,当电阻为负的时候,也可以很容易地使用Q 线。图9 中增加了纬线。这些纬线是由|Z|为常数时所形成的。赤道线代表的是|Z|=50Ω。

20180611025753535.jpg

图9、绘有常数Q(实线)和常数|Z|(虚线)的球形史密斯圆图

在球体中将Q 看作经线,而将|Z|看作纬线相当于用极坐标而不是用迪卡尔坐标来表示史密斯圆图,其中mag(Z) (幅值)= Sqrt(R2+X2) ,phase(Z) (相位)=arctan(X/R) = arctan(Q)。

当用到反射系数时,史密斯圆图也同样很有用。反射系数ρ 在史密斯圆图上的表示通常是针不同常数的|ρ|的值来绘出对应的曲线。这便会形成一系列的同心圆,圆心在传输线的特性阻抗点处( 我们这里用的是50Ω)。这些同心圆在史密斯圆图的中心点处从半径为零开始,逐渐增加直至反射系数为1 时到达史密斯圆图的圆周为止。具有|ρ|>1 的反射系数也可以在图上表示出来。这种情况说明反射波大于入射波。这便为反射增益,当存在负电阻时会出现这种情况。在球形史密斯图上可以很灵巧地处理这种情况。图10 显示出了球形史密斯图上|ρ|为常数时的曲线和ρ 的相位为常数时的曲线。纬线代表的是|ρ|为常数时的曲线,经线代表的是当ρ 的相位为常数时的曲线。北极点处于50Ω,反射系数为0(匹配完美的传输线),南极是-50Ω,反射系数为无穷大。赤道对应的反射系数|ρ|=1。当考虑反射系数时,北极和南极点对应的阻抗有90°的相位差。

20180611025803158.jpg

图10、绘有常数|ρ|(|虚线)和常数反射相位(实线)的球形史密斯圆图

图形方式和计算机辅助设计

史密斯圆图的扩展涉及到将平面2-D的圆图转移到球面的3-D 圆图上

史密斯圆图的2-D 特征可以很容易地印在纸上或显示在屏幕上。然而,对于3-D 史密斯圆图来说,就并非如此了。要显示史密斯圆图以及在图上画出曲线和轮廓便会有些实际上的困难。一个办法是做出打印好的小球。这会类似于一个塑料的足球,只不过代替六角形图案的是电阻和感抗曲线。图8 便是这样一个例子。在过去的许多年里,我将其放在书桌上作为设计或直观化的工具(我以前的一个同事为小球起名为Zelley 球,每次到我办公室时都会向我仍这个球,并以此为乐)。也许,在每个本科微波授课的教室前的讲台上应当放一个这样的球,类似于地理课上的地球仪。很明显,在球上画出仿真结果和轮廓会很费事。同样,手工在图上划线无法与常规计算机自动设计流程一体化。

另一种方法是使用3-D 计算机软件。这样可以使得设计者能够通过使用计算机鼠标或键盘来旋转和转动球形史密斯圆图。有可能让设计者选择显示阻抗,导纳(或混合形式)的史密斯圆图,将Q 或反射系数叠加在球的表面。球体是不透明的或半透明的。或许可以做多个球表面的2-D 投影,这可以成为计算机辅助设计的一个值得一试的折衷方案。

结论

本文重点讨论了传统2-D 史密斯圆图的局限性。提出了一种克服这些局限的扩展史密斯圆图的想法。这种扩展包括从2-D 阻抗平面转换到三维,并将其映射到球体的表面。相信这是首次提出的史密斯圆图的转换方法。

然后考虑了球形史密斯圆图的多种表示方法。包括使用常量电阻,电感,阻抗和反射系数曲线。最后,讨论了如何用图形方法来显示3-D 史密斯圆图。

需要指出的是,本文这里所讨论的许多观点还没有进行严密的数学运算,所以有可能在球形的史密斯圆图上出现一些不连续的地方。然而,基本的概念和想法是作者经过了充分思考的,是完全能够发表出来的。

希望本文所讨论的3-D 史密斯圆图可以在射频和微波设计界或者用作设计工具,或者用于直观化的帮助。希望本文至少提出了一个有趣的可供讨论的课题。

致谢

作者Chris Zelley在此深深感谢Steve Cripps 和Gord Rabjohn 的帮助和建议,以及他们对作者构思这篇文章所做的鼓励。

参考文献

[1] C.W. Davidson, Transmission Lines for Communications. London:MacMillon, 1989.
[2] D.M. Pozar, Microwave Engineering. New York: Wiley, 1998.
[3] R. Rhea, Philip H. Smith: A Brief Biography. New York: Noble, 1995.
[4] P.H. Smith, “Transmission-line calculator,” Electronics, vol. 12, no.1,pp. 29–31, 1939.
[5] P.H. Smith, “An improved transmission-line calculator,”Electronics, vol.17, no. 1, p. 130, 1944.
[6] H.F. Lenzing and C D’Elio, “Transmission line parameters with negative conductance loads and the “negative” Smith chart,” Proc IEEE,vol. 51, no. 3, pp. 481–482, Mar. 1963.


互联网
仪器推荐
文章推荐