分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

使用快速太赫兹量子阱光电探测器的太赫兹光检测(四)

2020.10.06
头像

王辉

致力于为分析测试行业奉献终身

Methods

Sample growth and device fabrication

The QWP is based on the one single photon design and the core region consists of 30-period AlGaAs/GaAs (80/18 nm) quantum well structure. The central 10 nm of the GaAs well is doped with Si to 5 × 1016 cm−3. The core region is sandwiched between the top and bottom GaAs contact layers. The whole QWP structure is grown using a molecular beam epitaxy (MBE) system on a semi-insulating GaAs (100) substrate. The aluminum concentration of the AlGaAs barrier is of great importance for determining the peak response wavelength. Here the aluminum fraction is set to 1.9%. The MBE-grown wafer is processed into mesa structures with top and bottom electrodes. The detailed fabrication process of the 45° edge facet QWP can be found in ref. 41.

The QCL used in this work is based on a Al0.25Ga0.75As/GaAs material system grown by a MBE system on a semi-insulating GaAs (100) substrate. The growth starts with a 400-nm thick n-type GaAs bottom contact layer followed by the active region which consists of 76 cascade periods. Finally, a 50-nm thick GaAs top contact layer with 5 × 1018 cm−3 doping is grown on top of the active region. The MBE-grown QCL wafer is processed into single plasmon waveguide lasers using the standard semiconductor laser processing technology, for instance, the optical lithography, wet and dry etching, electron beam evaporation, lift-off, and thermal annealing.

The as-cleaved QWP and QCL chips are indium-soldered on the copper base. Wire bonds are then used for the electrical injection. Finally the packaged devices are screwed onto the cold fingers of continuous-flow liquid Helium cryostats for low temperature measurements.

Experimental characterizations

Terahertz QWP performance characterization

The photoresponse spectra of terahertz QWPs with a spectral resolution of 4 cm−1 are measured using a Fourier Transform Infrared Spectrometer (FTIR) equipped with a Globar far-infrared broadband source. The peak responsivity of the QWP is calibrated using a 1000-K blackbody source. The noise spectral density is measured using a spectrum analyser with a resolution bandwidth of 1 Hz. To accurately measure the noise, a low noise current preamplifier (Stanford Research, SR570) with a sensitivity of 200 nA/V and a bandwidth of 2 kHz is used. The readout quantity from the spectrum analyser is in the unit of V/Hz−−−√ which can be converted to A/Hz−−−√ by considering the amplifier sensitivity in A/V. Finally the NEP parameter can be derived from the peak responsivity and the noise spectral density.

Rectification measurement

The microwave rectification of the terahertz QWP is measured by employing the experimental setup shown in Fig. 2c. To read the rectified voltage using a lock-in amplifier, we amplitude modulate the RF source at a frequency of 20 kHz by a wave function generator. In order to get a strong modulation signal, we increase the peak-to-peak voltage of the wave function generator until a 95% modulation depth is obtained.

Terahertz QCL characterization

The emission spectrum of the 6-mm long terahertz QCL is measured using a FTIR. The terahertz light emitted from the QCL is coupled into the FTIR via a side input port using an off-axis parabolic mirror. The spectral resolution is set as 0.1 cm−1. To reduce the water absorption, the FTIR is under vacuum and the beam path out side the FTIR is purged with dry air.

Optical inter-mode beat note measurement

The optical inter-mode beat note of the terahertz QCL is measured using the fast terahertz QWP as shown in Fig. 1. The beat note spectra are recorded using a spectrum analyser with a bandwidth of 26 GHz. To measure the weak beat note signal, the optical alignment is critical. We do the alignment as follows: Firstly, we use a red diode laser with a piece of filter paper and a small aperture placed in sequence at the output port to imitate the QCL point source. It would be much easier to align the two parabolic mirrors using the visible analogous point source. After the optics are well aligned, we replace the diode laser with our QCL. Here we have to put the QCL facet exactly at the same position of the diode laser. Then, we run the QCL to do the fine alignment using a terahertz camera (NEC, IR/V-T0831C). Finally we replace the terahertz camera with the fast QWP to perform the optical beat note measurement.

Go to:

Acknowledgements

The authors thank Stefano Barbieri for discussions on fast terahertz detectors. This work was supported by the “Hundred-Talent” Program of Chinese Academy of Sciences, the 973 Program of China (2014CB339803), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Natural Science Foundation of China (61575214 and 61405233), and the Shanghai Municipal Commission of Science and Technology (14530711300, 15560722000, 15ZR1447500, 15DZ0500103 and 17YF1430000).

Go to:

Author Contributions

H.L. conceived the experiment, W.J.W. conducted the molecular beam epitaxy growth and fabricated the terahertz QCLs, Z.L.F. and H.X.W. fabricated the terahertz QWPs, Z.Y.T., Z.L.F., C.W. and H.L. performed the electrical, optical and microwave rectification characterizations for the terahertz QWP, H.L., W.J.W., and Z.P.L. conducted the optical inter-mode beat note measurements for the terahertz QCL using the fast terahertz QWP, H.L. modelled the frequency-dependent rectified voltage for terahertz QWPs, T.Z. debugged the LabView programs for the automated measurements and provided assistance during the measurements, X.G.G. designed the QWP structure, H.L. wrote the manuscript, H.L. and J.C.C. supervised the experiment, and all authors reviewed the manuscript.

Go to:

Notes

Competing Interests

The authors declare that they have no competing interests.

Go to:

Footnotes

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Go to:

Contributor Information

Hua Li, Email: nc.ca.mis.liam@il.auh.

Jun-Cheng Cao, Email: nc.ca.mis.liam@oaccj.

Go to:

References

1. Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007;1(2):97. doi: 10.1038/nphoton.2007.3. [Cross Ref]

2. Köhler R, et al. Terahertz semiconductor-heterostructure laser. Nature. 2002;417:156–159. doi: 10.1038/417156a. [PubMed] [Cross Ref]

3. Williams BS. Terahertz quantum-cascade lasers. Nat. Photonics. 2007;1:517–525. doi: 10.1038/nphoton.2007.166. [Cross Ref]

4. Ito H, et al. Photonic terahertz-wave generation using antenna-integrated uni-travelling-carrier photodiode. Electron. Lett. 2003;39(25):1828. doi: 10.1049/el:20031195. [Cross Ref]

5. Momeni O, Afshari E. A Broadband mm-Wave and Terahertz Traveling-Wave Frequency Multiplier on CMOS. IEEE J. Solid-St. Circ. 2011;46(12):2966. doi: 10.1109/JSSC.2011.2162469. [Cross Ref]

6. Dooley D. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus World. 2010;46(5):49.

7. Gousev YP, et al. Coupling of terahertz radiation to a high-T-c superconducting hot electron bolometer mixer. Appl. Phys. Lett. 1996;69(5):691. doi: 10.1063/1.117808. [Cross Ref]

8. Dalloglio G, Melchiorri B, Melchiorri F, Natale V. Comparison between Carbon, Silicon and Germanium Bolometers and Golay Cell in Far Infrared. Infrared. Phys. 1974;14(4):347. doi: 10.1016/0020-0891(74)90041-4. [Cross Ref]

9. Nguyen KL, et al. Three-dimensional imaging with a terahertz quantum cascade laser. Opt. Express. 2006;14(6):2123. doi: 10.1364/OE.14.002123. [PubMed] [Cross Ref]

10. Zhou T, et al. Terahertz Imaging With Quantum-Well Photodetectors. IEEE Photon. Technol. Lett. 2012;24:1109–1111. doi: 10.1109/LPT.2012.2196033. [Cross Ref]

11. Chen Z, et al. Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electron. Lett. 2011;47(17):1002. doi: 10.1049/el.2011.1407. [Cross Ref]

12. Yang Y, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica. 2016;3:499–502. doi: 10.1364/OPTICA.3.000499. [Cross Ref]

13. Fu ZL, et al. Frequency Up-Conversion Photon-Type Terahertz Imager. Sci. Rep. 2016;6:25383. doi: 10.1038/srep25383. [PMC free article] [PubMed] [Cross Ref]

14. Gellie P, et al. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation. Opt. Express. 2010;18:20799–20816. doi: 10.1364/OE.18.020799. [PubMed] [Cross Ref]

15. Liu HC. Noise Gain and Operating Temperature of Quantum-Well Infrared Photodetectors. Appl. Phys. Lett. 1992;61(22):2703. doi: 10.1063/1.108115. [Cross Ref]

16. Guo XG, Cao JC, Zhang R, Tan ZY, Liu HC. Recent Progress in Terahertz Quantum-Well Photodetectors. IEEE J. Sel. Top. Quantum Electron. 2013;19(1):8500508. doi: 10.1109/JSTQE.2012.2201136. [Cross Ref]

17. Grant PD, Dudek R, Buchanan M, Liu HC. Room-temperature heterodyne detection up to 110 GHz with a quantum-well infrared photodetector. IEEE Photon. Technol. Lett. 2006;18(21–24):2218. doi: 10.1109/LPT.2006.884267. [Cross Ref]

18. Liu HC, Li JM, Buchanan M, Wasilewski ZR. High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique. IEEE J. Quantum Electron. 1996;32:1024–1028. doi: 10.1109/3.502380. [Cross Ref]

19. Barbieri S, et al. 13 GHz direct modulation of terahertz quantum cascade lasers. Appl. Phys. Lett. 2007;91(14):143510. doi: 10.1063/1.2790827. [Cross Ref]

20. Hinkov B, Hugi A, Beck M, Faist J. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers. Opt. Express. 2016;24:3294–3312. doi: 10.1364/OE.24.003294. [PubMed] [Cross Ref]

21. Scalari G, Hoyler N, Giovannini M, Faist J. Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 2005;86:181101. doi: 10.1063/1.1920407.[Cross Ref]

22. Wienold M, et al. Low-threshold terahertz quantum-cascade lasers based on GaAs/Al0.25Ga0.75As heterostructures. Appl. Phys. Lett. 2010;97:071113. doi: 10.1063/1.3480406. [Cross Ref]

23. Wan WJ, Li H, Zhou T, Cao JC. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation. Sci. Rep. 2017;7:44109. doi: 10.1038/srep44109. [PMC free article][PubMed] [Cross Ref]

24. Li H, et al. Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation. Opt. Express. 2015;23(26):33270. doi: 10.1364/OE.23.033270. [PubMed] [Cross Ref]

25. Barbieri S, et al. Imaging with THz quantum cascade lasers using a Schottky diode mixer. Opt. Express. 2005;13:6497–6503. doi: 10.1364/OPEX.13.006497. [PubMed] [Cross Ref]

26. Khosropanah P, et al. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. Opt. Lett. 2009;34:2958–2960. doi: 10.1364/OL.34.002958. [PubMed] [Cross Ref]

27. Barbieri S, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nat. Photonics. 2010;4:636–640. doi: 10.1038/nphoton.2010.125. [Cross Ref]

28. Ravaro M, et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling. Appl. Phys. Lett. 2013;102:091107. doi: 10.1063/1.4793424. [Cross Ref]

29. Zhang R, Fu ZL, Gu LL, Guo XG, Cao JC. Terahertz quantum well photodetectors with reflection-grating couplers. Appl. Phys. Lett. 2014;105(23):231123. doi: 10.1063/1.4904221. [Cross Ref]

30. Zhang R, et al. Terahertz quantum well photodetectors with metal-grating couplers. IEEE J. Sel. Top. Quantum Electron. 2017;23(4):3800407. doi: 10.1109/JSTQE.2016.2608618. [Cross Ref]

31. Palaferri D, et al. Patch antenna terahertz photodetectors. Appl. Phys. Lett. 2015;106(16):161102. doi: 10.1063/1.4918983. [Cross Ref]

32. Peytavit E, Coinon C, Lampin JF. A metal-metal Fabry-Pérot cavity photoconductor for efficient GaAs terahertz photomixers. J. Appl. Phys. 2011;109(1):016101. doi: 10.1063/1.3525709. [Cross Ref]

33. Rogalski A, Sizov F. Terahertz detectors and focal plane arrays. Opto-Electronics Review. 2011;19(3):346–404. doi: 10.2478/s11772-011-0033-3. [Cross Ref]

34. Hussin R, Chen YX, Luo Y. Thin-film single-crystal Schottky diodes for IR detection and beyond. IEEE Trans. Electron Dev. 2016;63(10):3971–3976. doi: 10.1109/TED.2016.2598177. [Cross Ref]

35. Ito H, Ishibashi T. InP/InGaAs Fermi-level managed barrier diode for broadband and low-noise terahertz-wave detection. Jpn. J. Appl. Phys. 2017;56:014101. doi: 10.7567/JJAP.56.014101. [Cross Ref]

36. Zhang W, et al. Quantum noise in a terahertz hot electron bolometer mixer. Appl. Phys. Lett. 2010;96(11):111113. doi: 10.1063/1.3364936. [Cross Ref]

37. Shcheslavskiy V, et al. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector. Rev. Sci. Instrum. 2016;87:053117. doi: 10.1063/1.4948920.[PubMed] [Cross Ref]

38. Virginia Diodes, Inc. http://vadiodes.com/en/products/mixers.

39. Hubers HW. Terahertz heterodyne receivers. IEEE J. Sel. Top. Quantum Electron. 2008;14(2):378–391. doi: 10.1109/JSTQE.2007.913964. [Cross Ref]

40. Hayton, D. J. et al. A 4.7 THz HEB/QCL heterodyne receiver for STO-2. 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, Arizona, 2014.

41. Gu LL, et al. Terahertz quantum well photo-detectors: grating versus 45 degrees facet coupling. J. Phys. D: Appl. Phys. 2014;47(16):165101. doi: 10.1088/0022-3727/47/16/165101. [Cross Ref]


互联网
文章推荐