分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

实验室分析仪器--有机质谱分析仪样品萃取技术

2022.1.26
头像

zhaoqisun

致力于为分析测试行业奉献终身

萃取是利用溶质在互不混溶的两相之间分配系数的不同而使溶质得到纯化或浓缩的技术。

1.液-液萃取
用溶剂从溶液中抽提物质叫液-液萃取,也称溶剂萃取。经典的液液萃取指的是有机溶剂萃取。其广泛应用于分析化学中许多性质相似物质的分离、大量基体中微量成分的分离浓集;也广泛应用于抗生素、有机酸、维生素、激素等发酵产物工业规模的提取。其具有比化学沉淀法分离程度高;比离子交换法选择性好传质快;比蒸馏法能耗低;生产能力大、周期短、便于连续操作、易实现自动化控制等优点。


2.液-固萃取
用某种溶剂把有用物质从固体原料中提取到溶液中的过程称为液固萃取,也称浸取或浸出。如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏。这类技术在质谱分析的样品制备中也得到广泛运用。



3.固相萃取
固相萃取(solid phase extraction,SPE)是从20世纪80年代中期开始发展起来的一项样品前处理技术。由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离、净化和富集。主要目的在于降低样品基质干扰,提高检测灵敏度。

SPE技术基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离和净化,是一种包括液相和固相的物理萃取过程,也可以将其近似地看作一种简单的色谱过程。

SPE利用选择性吸附与选择性洗脱的液相色谱法分离原理。较常用的方法是使液体样品溶液通过吸附剂,保留其中被测物质,再选用适当强度溶剂冲去杂质,然后用少量溶剂迅速洗脱被测物质,从而达到快速分离净化与浓缩的目的;也可选择性吸附干扰杂质,而让被测物质流出;或同时吸附杂质和被测物质,再使用合适的溶剂选择性洗脱被测物质。


4.固相微萃取
固相微萃取(solid-phase microextraction,SME)技术是20世纪90年代兴起的一项新型的样品前处理与富集技术,它由加拿大 Waterloo Pawliszyn教授的研究小组于1989年首次进行开发研究,属于非溶剂型选择性萃取法。


SPME是在固相萃取技术基础上发展起来的一种微萃取分离技术,是一种集采样、萃取浓缩和进样于一体的无溶剂样品微萃取新技术。固相微萃取装置类似于微量进样器,不过其手柄接有一个受不锈钢保护的、可伸缩或进出的有吸附剂涂层的石英纤维头(萃取头)。固相微萃取采样时,将固相微萃取针管穿过样品瓶密封垫,插入样品瓶中,然后推出萃取头,将萃取头浸入样品(浸入方式)或置于样品上部空间(顶空方式)进行萃取。与固相萃取技术相比,固相微萃取操作更简单,设备携带更方便,操作费用也更加低廉。另外,固相微萃取克服了固相萃取回收率低、吸附剂孔道易堵塞的缺点,因此成为目前所采用的样品前处理术中应用较为广泛的方法之一。


5.液相微萃取
液相微萃取(liquid-phase microextraction,LPE)技术是20世纪90年代由 Jeannot kn和 Cantwell等最早报道的一种样品前处理技术,和固相微萃取类似,液相微萃取只是将固相微萃取有吸附剂涂层的石英纤维换成了有机溶剂,进行类似的顶空萃取。其基本原理是目标分析物在样品与微升级的萃取溶剂之间达到分配平衡,从而实现溶质的微萃取。LPME克服了传统液液萃取技术烦琐、浪费、污染等缺点,具有消耗溶剂少(仅需微升级)、富集倍数大萃取效率高、操作更简便和便于实现分析的自动化等优点。


6.毛细管固相微萃取
毛细管固相微萃取技术使用一段中空的熔融石英毛细管柱作为萃取介质的载体,在管内壁涂上固定相或者在管内部填充介质。该技术与传统固相微萃取技术比较具有以下优点:①吸附表面积大,萃取效率高;②脱附时固定相流失少,无样品组分残留;③有大量的不同固定相商品毛细管柱可选择;④方便与分析仪器在线联用。

毛细管固相微萃取技术从1997年问世至今取得了飞速发展,被广泛应用于生物、医药、环境、食品等领域。各种萃取模式、萃取介质和涂层不断涌现,新型涂层及其制备技术是当前的一个研究热点,尤其是溶胶-凝胶技术和分子印迹技术制备的固定相具有更高的灵敏度和更好的选择性,在固相微萃取涂层制备中有着广泛的应用前景。另一个研究热点是毛细管萃取柱与现代分析设备在线联用,如与HPLC、GC、CE、ICP-MS、GC-MS、LC-MS等联用,实现了自动进样、萃取、脱附、分析一体化操作,适合批量样品高通量与高重复度分析。样品预处理装置微型化、自动化高通量、无溶剂化在线联用将是这一技术今后发展的主要趋势。


7.气体萃取(静态顶空技术、动态顶空技术)
顶空技术亦即气体萃取技术,常常用于气相色谱分析。

静态顶空技术是在一个密闭的容器中,当样品与样品上方的气体达到平衡后,直接抽取样品上方气体进行测定的技术。

动态顶空是相对于静态顶空而言的。与静态顶空不同,动态顶空不是分析平衡状态的顶空样品,而是用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物质吸附下来,然后经热解吸将样品送入GC、GC-MS进行分析。因此,通常称为吹扫捕集(purge&trap)进样技术。在绝大部分吹扫捕集应用中都采用氦气作为吹扫气,将其通入样品溶液鼓泡。在持续的气流吹扫下,样品中的挥发性组分随氦气逸出,并通过一个装有吸附剂的捕集装置进行浓缩。在一定的吹扫时间之后,待测组分全部或定量地进入捕集器。此时,关闭吹扫气,由切换阀将捕集器接入GC、GC-MS的开气气路,同时快速加热,捕集的样品组分解吸后随载气进入GC、GC-MS分离分析。所以,吹扫-捕集的原理是:动态顶空萃取→吸附捕集热解吸→GC分析。吹扫-捕集进样技术已广泛应用于环境分析,如饮用水或废水中的有机污染物分析。也用于食品中挥发物(如气味成分)的分析。显然,许多用吹扫-捕集技术分析的样品也可以用静态顶空技术分析,只是前者灵敏度较高,且可分析沸点相对高(蒸气压低)的组分。此外,吹扫捕集技术比静态顶空技术的平衡时间短。


8.超临界流体萃取
超临界流体萃取( supercritical fluid extraction,SFE)技术就是利用超临界流体为溶剂,从固体或液体中萃取出某些有效组分,并进行分离的一种技术。

超临界流体萃取法的特点在于充分利用超临界流体兼有气、液两重性的特点,在临界点附近,超临界流体对组分的溶解能力随体系的压力和温度发生连续变化,从而可方便地调节组分的溶解度和溶剂的选择性。超临界流体萃取法兼具萃取和分离的双重作用且物料无相变过程因而节能明显,工艺流程简单,萃取效率高,无有机溶剂残留,产品质量好,无环境污染。

可作超临界流体的气体很多,如二氧化碳、乙烯、氨、氧化亚氮、二氯二氟甲烷等,通常使用二氧化碳作为超临界萃取剂。应用二氧化碳超临界流体作溶剂,具有临界温度与临界压力低、化学惰性等特点,适合于提取分离挥发性物质及含热敏性组分的物质。但是,超临界流体萃取法也有其局限性,二氧化碳-超临界流体萃取法较适合于亲脂性、分子量较小的物质萃取,超临界流体萃取法设备属高压设备,投资较大。


9.微波萃取
微波是指频率在300kHz~300MHz的电磁波。微波萃取是利用电磁场的作用使固体或半固体物质中的某些有机物成分与基体有效地分离,并能保持分析对象的原始化合物状态的一种分离方法。

由于微波的频率与分子转动的频率相关联,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24.5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使样品分解或细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。

微波具有波动性、高频性、热效应和非热效应四大特点,这决定了微波萃取具有以下特点:

①试剂用量少、节能、污染小。

②加均均匀,且热效率较高。传统热萃取是以热传导、热辐射等方式自外向内传递热量,而微波萃取是一种“体加热”过程,即内外同时加热,因而加热均匀,热效率较高。微波萃取时没有高温热源,因而可消除温度梯度,且加热速度快,物料的受热时间短,因而有利于热敏性物质的萃取。

③微波萃取不存在热惯性,因而过程易于控制。

④微波萃取无需干燥等预处理,简化了工艺,减少了投资。

⑤微波萃取的处理批量较大,萃取效率高,省时。与传统的溶剂提取法相比,可节省50%~90%的时间。

⑥微波萃取的选择性较好。由于微波可对萃取物质中的不同组分进行选择性加热,因而可使目标组分与基体直接分离开来,从而可提高萃取效率和产品纯度。

⑦微波萃取的结果不受物质含水量的影响,回收率较高。

基于以上特点,微波萃取常被誉为“绿色提取工艺”。



10.搅拌棒吸附萃取
搅拌棒吸附萃取(stirbarsorptiveextraction,SBSE)是一种新型的固相微萃取样品前处理技术,是将聚二甲基硅氧烷(polydimethylsiloxane,PDMS)套在内封磁芯的玻璃管上作为萃取涂层,由Baltussen等于1999年提出, MGerstelGmbH公司2000年将其商品化。SBSE萃取原理与SPME的萃取原理一致,具有固定相体积大、萃取容量高、无需外加搅拌子、可避免竞争性吸附、能在自身搅拌的同时实现萃取富集等优点,已广泛应用于食品、环境和生物样品分析的前处理。


互联网
仪器推荐
文章推荐