分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

CRISPR可以做分子诊断

2021.6.30
头像

王辉

致力于为分析测试行业奉献终身

CRISPR-Cas系统背景回放


面对噬菌体的威胁,细菌进化出了一套专门针对噬菌体或外源性遗传物质的CRISPR-Cas免疫系统。CRISPR全称为“簇状、规律间隔的、短回文重复序列”(Clustered Regularly Interspaced Short Palindromic Repeats),是由众多短而保守的重复序列区(repeat)和间隔区(spacer)组成。如图1所示: Repeat是细菌固有序列,能够同时结合Cas蛋白和spacer的序列,而spacer则是细菌(或是其祖先)感染过的病毒序列。一旦噬菌体感染发生,绝大多数的细菌死亡,极少部分的细菌由于其基因变异得以生存。这些细菌中的一部分,将噬菌体的DNA序列切割后,插入repeat区域中,形成spacer,从而获得类似高等生物“免疫记忆”的能力


115538l1g5ssba5lefff5l.jpg

图解CRISPR-Cas系统获得性免疫的机制

(Van Der Oost J, Westra  ER,et al. 2014)


随着CRISPR-Cas机理的逐步揭示和新的Cas酶(Cas12/Cas13/Cas14)的发现,科学家们发现这个系统非常强大,可以精准高效地实现基因编辑,比如对某个基因的敲除、插入和替换等。而CRISPR系统的序列特异性识别能力已经被应用在越来越多的领域,如医药,食品,农业和工业生物技术等,这些应用很大程度上都是以Cas9为基础进行开发的,而新发现的Cas12/Cas13/Cas14不同于Cas9,使得CRISPR系统在病原体的快速诊断和肿瘤基因检测领域的应用成为可能


Cas12a-单链DNA的“新魔剪”



今年4月,有CRISPR女神之称的Jennifer Doudna 教授在《Science》撰文指出Cas12酶家族在gRNA的引导下与目标序列结合以后,便会切换为激活状态,疯狂的切割体系内其它的单链DNA。Cas12a这一特点可被用于分子诊断领域,实现对肿瘤基因或特定病原体的检测。在体系内加入含有报告基团的单链底物后,如果Cas12a识别到靶序列(目标病原体或肿瘤基因)的存在,就会切割单链底物从而释放荧光报告基团


115538jjnzugxrqae3q3p0.jpg

Cas12a具有靶向切割单链DNA活性及附带切割特点

(Chen JS,  Ma E,  et al. 2018)


Cas12a可以实现HPV的准确分型




但是如果样本中的目标基因含量非常少,Cas12a与gRNA复合物匹配到需检测靶序列的概率很低。此时就需要先扩增靶序列,提高需要检测底物的丰度。PCR(聚合酶链式反应)是常用于这一目的扩增手段,但是需要专门的PCR仪进行温控反应。而另外一种信号扩增技术——重组聚合酶扩增(RPA),可以在恒温状态下实现信号的扩增,而不需要复杂的升温降温过程。Doudna教授创新性的将Cas12a靶向切割单链DNA的特性与RPA技术联合起来,开发了一种名为DETECTR的技术(DNA Endonuclease-Targeted Crispr Trans Reporter)。研究结果表明,肛拭子取样后等温扩增10分钟,使用Cas12a系统对扩增产物进行检测,可以在1小时内检测到人乳头瘤病毒(HPV)并准确区分两种相似的亚型,HPV16和HPV18。DETECTR技术的开发为实现病原体或肿瘤基因的即时检验(POCT) 又提供了一个强有力的支撑平台。


115538dqn3m3j0mlr7c85r.jpg

研究者基于CRISPR-Cas12a联合 RPA技术开发的

DETECTR技术(Chen JS,  Ma E,  et al. 2018)


那CRISPR-Cas12a与CRISPR-Cas9有什么区别呢? Cas9是最早发现的Cas酶之一,也是目前为止研究最深入和应用最广泛的Cas酶,在基因编辑、疾病治疗等方面的应用前景巨大。然而CRISPR-Cas9缺乏切割单链核酸的酶活结构域,无法用于体外检测。而Cas12/13/14则普遍存在第二个酶活结构域,当蛋白正确结合到靶向序列时,能够激活这一结构域,切割探针小分子,实现从待检序列信息到荧光信号的转化。基于它们的这一特点,在医学检测领域需要靶向检测已知序列的情况下,能够实现普通实时定量PCR所无法达到的灵敏度,摆脱对实时定量PCR仪的依赖。

115538dj3hqkuky630sj06.jpg

Cas 12a

关键词

1、细菌免疫系统 CRISPR Cas 

2、病原体快速诊断

3、肿瘤基因检测

4、等温扩增(RPA)

5、即时检验(POCT)

参考文献

1. Van Der Oost, J., Westra, E. R., Jackson, R. N., & Wiedenheft, B. (2014). Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature reviews Microbiology, 12(7), 479.

2.Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436-439.


互联网
文章推荐