分析测试百科网

搜索

分析测试百科网 > 行业资讯 > 微信文章

AFS-6801原子荧光光谱法测定地质样品需要注意的问题及解决方法

美析仪器
2022.12.15


AFS-6801原子荧光光谱法测定地质样品需要注意的问题及解决方法

01


引言


氢化物-原子荧光光谱法(HG-AFS)因其灵敏度高、干扰少等优点,成为环境及地质样品中砷、锑、铋、汞等元素较为理想的分析手段之一。在测试过程中待测元素的溶样手段、氢化物发生的条件、基体及共存元素的干扰及消除方法、酸度及载气流速、仪器条件等都会对仪器测试的灵敏度与准确度产生影响。氢化物发生-原子荧光光谱法测定地质样品中As、Sb、Bi、Hg主要分为样品制备和上机检测两部分,其中上机测定过程中要涉及到仪器的进样系统、气液分离系统、原子化系统、光电检测系统,每个部分、系统和过程都有诸多问题需要认真关注和充分解决。


02


样品制备环节

1.酸度的影响

  因为不同价态的As、Sb具有不同的氢化反应速度,As(Ⅲ)、Sb(Ⅲ)的灵敏度比相同浓度的As(Ⅴ)、Sb(Ⅴ)高约1.5倍。而在酸性溶液中,As、Sb常以五价存在,为避免测定结果偏低,提高灵敏度,在上机测定前需要加入硫脲-抗坏血酸,使As(Ⅴ)、Sb(Ⅴ)转化为As(Ⅲ)、Sb(Ⅲ)。实验证明在15%-50%的盐酸介质中,As、Sb随酸度的增加其荧光强度也随之增加,而Bi、Hg在实验范围内影响较小。实验所用的酸最好选用优级纯,盐酸、硝酸中常含有As、Hg。在多数情况下,某一种酸只影响个别元素而很少影响所有元素的测定。

2.硼氢化钾浓度的影响

 硼氢化钾作为氢化反应的还原剂直接影响荧光强度,为保持硼氢化钾的相对稳定,溶液需呈微碱性.在KOH(5g/L)固定的浓度条件下,分别加入不同量的硼氢化钾然后测定荧光强度。结果表明,在5-40 g/L的范围内,硼氢化钾的浓度增大,元素的荧光强度也随之增大,但背景值也增大。硼氢化钾浓度降低,氩氢焰高度降低,火焰发射及散射引起的噪声减小,使信噪比得到改善。原子荧光分析手册指出硼氢化钾浓度增大易引起液相干扰。但如果硼氢化钾浓度太低,则使得氢化反应慢,而且还原不完全,使得火焰变小,荧光信号弱,灵敏度和精密度降低。对于硼氢化钾最好现用现配,溶液放置的时间稍长就会被空气氧化并伴有气泡产生,影响溶液的提升量而且还原能力降低,未用完的硼氢化钾溶液应放入温度小于10℃的冰箱保存,最长时间只能保存一周,过期不能再用。

03


仪器测定

1.元素灯、负高压的影响

  荧光强度同待测原子浓度成正比,也同辐射功率成正比,这就要求在测试过程中需要保持光源辐射的稳定,即空心阴极灯的发射强度变化要小,采取的主要措施是测试前对灯进行预热。另一方面,还需调节灯电流及负高压,适当的灯电流及负高压能保证足够的检测灵敏度及稳定性。Hg灯易漂移,尽量连续测量,而且每测20个左右样品需重新校正工作曲线。在一定范围内,荧光强度随灯电流的增加而增大,但灯电流过大,会发生自吸现象,噪声也随之增大,同时对灯的寿命也有影响。光电倍增管的负高压在一定范围内与荧光强度成正比,负高压越大信号放大的倍数越大,同时噪声也相应增大,所以在满足分析要求的情况下,不要设置过高的负高压。

2.载气流量的影响

  在断续流动进样方式中,信号的强度与泵的转动时间和转速成正比,实验时应根据样品的浓度选择最佳的时间和转速。氢化物-原子荧光光谱法采用的载气和屏蔽气均为氩气,氩气作为屏蔽气能防止周围的空气进入火焰,造成荧光猝灭。屏蔽气流量的确定直接影响着测定的灵敏度。载气流量减少使得氢化物无法快速进入原子化器,而且易产生记忆效应,而载气流量增大会稀释氢化物,使仪器的灵敏度降低。

3.原子化器高度及温度的影响

  固定原子化器装置指示的高度数值越大,原子化器的高度越低,氩氢火焰的位置越低,理论上不同元素的原子蒸汽密度最大值不在同一高度上,但在实际检测时,元素灯照射在火焰上的光斑较大,而元素间最佳高度相差很小,因此原子化器高度可以固定在一个合适的位置上不需要总调动。由氢化物发生器导入的氢化物、氢气和氩气通过石英炉原子化器时,被点燃形成氩氢焰,砷化氢、锑化氢等在此火焰中分解并原子化。实验证明,炉温在低于750℃时气流通过石英炉时不能被点燃,荧光强度为零。氢化物通过石英炉芯进入氩氢火焰原子化之前,适当的预热可以提高原子化效率,减少猝灭效应和气相干扰。

元素干扰影响

1.共存元素的干扰

  原子荧光测定As、Sb时能产生严重干扰的元素有金、钴、镍、锗、钯、钌等,中等干扰的有银、铋、铜、硒等.通过在As、Sb混标溶液中加入不同含量的干扰元素进行测定,结果表明干扰情况与上述基本相符。但由于硫脲-抗坏血酸的存在,共存元素在试验的范围内不干扰测定。在干扰试验中,由于大量Fe的存在,非但不干扰As、Sb的测定,而且在克服其他元素对As、Sb的干扰及加速As、Sb的还原方面均起到一些作用。

2.液相干扰

  液相干扰产生在氢化物形成或形成的氢化物从样品溶液中逸出的过程中,由氢化物发生的速度的改变或由于发生效率的改变引起的。消除方法可以采用加入络合剂、增加酸度、降低还原剂浓度、通过化学反应改变干扰离子的价态、分离干扰元素等方法。

3.气相干扰

      气相干扰是由挥发的氢化物引起的,一般指可形成氢化物的元素之间在传输及原子化过程中的相互干扰。消除方法可以采用在氢化物发生阶段,应用一些特殊的方法,如加入铜盐克服硒对砷的干扰;在氢化物传输阶段,采用分离、化学反应等方法;在原子化阶段,主要是减少原子浓度的衰减,防止氢化物的形成,并选择最佳的原子化器的温度和条件。

04


仪器参数

AFS-6801原子荧光光度计

4f58a1533fe36aac9e3f2403eec94fda.jpeg

1.仪器用途

适用于样品中砷、汞、硒、锡、铅、铋、锑、碲、锗、镉、锌、金等十二种元素的痕量分析。

2.工作环境

*电源:220V,50Hz

*温度:15~35℃(严格来说是15~25℃)

*相对湿度:≤90%

3.技术参数

*检出限(D.L.):

As、Se、Pb、Bi、Sb、Te、Sn < 0.01µg/L

Hg、Cd <0.001µg/L

Ge <0.05μg/L

Zn <1.0μg/L

Au <3.0μg/L

*精密度(RSD)≤0.7%

*线性范围: 大于三个数量级。

4.仪器主机

*双道两元素可同时测量。

*光路:双光束单检测器光学系统,多灯位设计,全通道双光束对等系统设计,具有极佳的通道一致性,抗干扰杂光影响,提高仪器准确性和稳定性。

*光源系统:空芯阴极灯采用新式脉冲调制/恒流驱动供电方式。

*空芯阴极灯采用编码技术,仪器自动识别空芯阴极灯,并可监控空芯阴极灯的工作状态及使用寿命

*检测系统:采用进口光电倍增管。

*进样系统:采用注射泵顺续流动进样装置。(样品空白交替引入,避免样品交叉污染,保证测量准确性)

*采用新型断续流动无残留蒸气发生反应系统,反应效率更高

*采用高效涌流式两级化学气液反应分离装置,化学反应更完全,气液分离效果更佳,特别适合岩矿、土壤等复杂样品测定

*具有载气稳流装置 ,既可在线消除硼氢化钾产生的气泡,又可降低试剂间扩散效应,提高仪器稳定性

*具备两级汽液分离装置,第一级化学气相发生气液分离,二级水封汽液分离装置高效除水无需手动排废

05


关于美析
   

上海美析仪器有限公司(以下简称美析),是一家具有自主知识产权的高新技术企业,美析的创业理念“科技——因你改变”,并以此为企业宗旨,不断探究、果敢创新。特别是在分析测试仪器领域,不断开发出先进的产品,使美析成为优质仪器资源的供应者。

美析主营光谱类仪器:可见分光光度计、紫外可见分光光度计、原子吸收光谱仪、原子荧光光度计、ICP-AES、ICP-MS,生命科学仪器:超微量分光光度计、全自动核酸提取仪,目前,我们的产品已广泛应用于有机化学、无机化学、生物化学、医药、环保、冶金、石油、农业等领域。同时美析利用在产品机械结构、光学设计、电气应用和软件开发方面积累的丰富经验,结合市场的最新实际需求,近期将陆续推出一批全新的分析类仪器。

b5c23a10a96b951cd579104cdf95c2d8.png


406b19e0f46b1005446d5ec76bb4aabd.jpg

了解更多内容请关注

我公司微信公众号:美析仪器


发布需求
作者
头像
仪器推荐
文章推荐