分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

基因芯片技术的主要应用

2021.6.01
头像

xujinping

致力于为分析测试行业奉献终身

  1998 年底美国科学促进会将基因芯片技术列为 1998 年度自然科学领域十大进展之一,足见其在科学史上的意义。现在,基因芯片这一时代的宠儿已被应用到生物科学众多的领域之中。它以其可同时、快速、准确地分析数以千计基因组信息的本领而显示出了巨大的威力。这些应用主要包括基因表达检测、突变检测、基因组多态性分析和基因文库作图以及杂交测序等方面。在基因表达检测的研究上人们已比较成功地对多种生物包括拟南芥(Arabidopsis thaliana)( Arabidopsis thaliana ) [10,11] 、酵母 (Saccharomyces cerevisiae )[12,13] 及人 [15,16] 的基因组表达情况进行了研究,并且用该技术(共 157,112 个探针分子)一次性检测了酵母几种不同株间数千个基因表达谱的差异 [14] 。实践证明基因芯片技术也可用于核酸突变的检测及基因组多态性的分析,例如对人 BRCA Ⅰ基因外显子 11[17] 、 CFTR 基因[ 22 ] 、β  -地中海贫血 [24] 、酵母突变菌株间 [20] 、 HIV-1 逆转录酶及蛋白酶基因(与 Sanger 测序结果一致性达到 98% ) [21] 等的突变检测,对人类基因组单核苷酸多态性的鉴定、作图和分型 [19] ,人线粒体 16.6kb 基因组多态性的研究 [24] 等。将生物传感器(Biosensor)与芯片技术相结合,通过改变探针阵列区域的电场强度已经证明可以检测到基因( ras 等)的单碱基突变 [26] 。此外,有人还曾通过确定重叠克隆的次序从而对酵母基因组进行作图 [25] 。杂交测序是基因芯片技术的另一重要应用。该测序技术理论上不失为一种高效可行的测序方法,但需通过大量重叠序列探针与目的分子的杂交方可推导出目的核酸分子的序列,所以需要制作大量的探针。基因芯片技术可以比较容易地合成并固定大量核酸分子,所以它的问世无疑为杂交测序提供了实施的可能性,这已为实践所证实 [27,28] 。

网络
文章推荐