分析测试百科网

搜索

喜欢作者

微信支付微信支付
×

利用动物能量代谢测量技术研究环境污染对动物的影响-2

2021.3.01
头像

王辉

致力于为分析测试行业奉献终身

毒死蜱(农药)-田鼠

毒死蜱(CPF)是一种最常用的有机磷杀虫剂,CPF的生物活性产生更具神经毒性的CPF-oxon,抑制乙酰胆碱酯酶活性,导致胆碱能神经元反复放电,使得昆虫异常兴奋、痉挛、麻痹、死亡。啮齿动物栖息于农田,因此其暴露风险很高。虽然它们不是目标生物,杀虫剂可能不会总是杀死非目标生物,但它们会降低它们的生理性能。有机磷杀虫剂暴露会改变啮齿类动物的体温调节,这可能会削弱动物应对不利热环境的能力。
 

农用化学品可能对非目标生物造成不利影响。动物能量代谢率可以通过影响食物消耗、生物转化和毒物的消除率来影响其对农药的易感性。文中使用实验进化来研究能量代谢速率和接触有机磷杀虫剂毒死蜱(CPF)对野生啮齿动物田鼠的产热能力内在差异的影响。实验对象分别划分为四个高游泳诱导有氧运动能量代谢(A)组和四个未选择对照(C)。在 A 组中,产热能力以最大冷诱发的耗氧率(VO2 cold)衡量,高于C组;在通过食物持续接触 CPF或通过口服量带单剂量后,产热能力降低,但仅在接触后不久测量时降低。VO2冷暴露测量24小时后,反复暴露不受影响。此外,单剂量灌胃可减少食物消耗和体重损失。重要的是,CPF的不良反应在实验组和对照组之间没有区别。因此,接触CPF对该物种的热调节性能和能量平衡有不利影响。其影响是短暂的,其影响大小与能量代谢的内在水平不相关。即使没有严重的中毒症状,在恶劣的环境条件下,如寒冷和潮湿的天气,健康状况也会损害(Dheyongera et al., 2016)。
 

文中啮齿类产热能力评估使用SSI呼吸代谢测量技术以2000毫升/分钟的流速,以拉气方式测量动物在23至37摄氏度的耗氧量,详细的技术方案请咨询易科泰生态技术有限公司。
 

image.png


原油(水溶性部分)-大型溞

商业化的微小生物体高通量呼吸测量系统的问世使得水生无脊椎动物、鱼类等水生动物的胚胎呼吸测量变得高效、精确。高通量呼吸测量系统测量时单个样品被放置于气密性良好24孔板的微孔里(相当于24个呼吸室),每个孔内部都配备有可无损测量氧气、可重复利用的氧气传感贴片,用来实时测量耗氧率(上图)。为了实现高通量,该套系统可以被升级成包含10件读取器/24孔板的串联组合,以实现同时测量240个组织的呼吸。

image.png

芬兰图尔库大学研究了原油水溶性部分(WSF)与可孤雌生殖的大型溞表型个体差异的关联,包括剂量效应和世代影响。结果显示(上图):暴露于30%WSF 48小时的大型溞的耗氧率变异性低于暴露10%WSF的大型溞和对照组,但三者的平均值没有变化;未暴露和10%WSF暴露的大型溞F1和F2代耗氧率低于亲本F0,且低于30%暴露的子代,表现出了因环境污染导致的世代影响。大型溞耗氧率的测定采用了80μL的24孔板系统,对每种处理的21个个体(3个世代,每个世代7个个体)进行了高通量呼吸测量(Nikinmaa et al., 2019)。
 

氧化铜纳米粒子(防污涂层)-亚马逊观赏鱼

氧化铜纳米粒子(nCuO)广泛应用于船的防污涂料并由此释放到环境,对水生生物具有潜在的毒害作用。
 

巴西国家亚马逊研究所的Braz-Mota等人测量了短鲷和霓虹灯鱼两种亚马逊观赏鱼的耗氧率,借以研究两种形态的铜——溶解态铜(Cu)和氧化铜纳米粒子(nCuO)对其影响。研究发现两种鱼的代谢应激具有种特异性:仅暴露于Cu的霓虹灯鱼耗氧率升高(nCuO未升高),而短鲷的两种处理未见明显变化。结合鳃渗透压调节生理、线粒体功能、氧化应激和形态学损伤等方面的数据,论文揭示了两种亚马逊鱼对两种形态的铜的不同代谢响应,而代谢响应的不同和两种鱼的生活史有关,意味着污染物不同的毒性作用机制与不同的渗透压调节策略有关(Braz-Mota et al., 2018)。
 

论文中代谢率/耗氧率(MO2)数据的采集使用了鱼类呼吸代谢测量系统。测试鱼放于70mL的玻璃呼吸室中,测量系统自动运行间歇、流通测量(automated intermittent flow respirometry),一个MO2数值的获取包括3个阶段:交换-等待-测量,每种处理的鱼分别持续采集了4小时。

image.png


参考文献

1.蒋正华. 生态健康与科学发展观[M]. 气象出版社, 2005.

2.方世南. 生态健康与人民健康同构关系中的生态政治哲学蕴涵研究[J].兰州学刊, 2020(3): 5-12.

3.孟紫强. 生态毒理学[M]. 高等教育出版社, 2009.

4.Handy R D, Depledge M H. Physiological responses: their measurement and use as environmental biomarkers in ecotoxicology[J]. Ecotoxicology, 1999, 8(5): 329-349.

5.Cook S . Compound and Dose-Dependent Effects of Two Neonicotinoid Pesticides on Honey Bee (Apis mellifera) Metabolic Physiology[J]. Insects, 2019, 10(1).

6.M.F.Guigueno,J.A.Head,R.J.Letcher,N.Karouna-Renier,L.Peters,A.M.Hanas,K.J.Fernie. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks[J]. Environmental PollutionVolume 253, October 2019, 899-908.

7.Dheyongera G, Grzebyk K, Rudolf AM, Sadowska ET, Koteja P. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism. Chemosphere. 2016;149:383-390.

8.Nikinmaa M , Suominen E , Anttila K . Water-soluble fraction of crude oil affects variability and has transgenerational effects in Daphnia magna[J]. Aquatic Toxicology, 2019, 211:137-140.

9.Braz-Mota S, Campos D F, MacCormack T J, et al. Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi)[J]. Science of the Total Environment, 2018, 630: 1168-1180.


互联网
文章推荐